Publication

Formal [4+1] Cycloaddition of o ‐Aminobenzyl Chlorides with Isocyanides: Synthesis of 2‐Amino‐3‐Substituted Indoles

Abstract

Reaction of substituted o-aminobenzyl chlorides with isocyanides in the presence of a weak base (NaHCO3) at room temperature afforded the diversely functionalized 2-aminoindoles in good to excellent yields. A formal [4+1] cycloaddition of the in situ generated aza-ortho-xylylenes with isocyanides accounted for the reaction outcome.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (4)
Indole
Indole is an aromatic, heterocyclic, organic compound with the formula . It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered pyrrole ring. Indole is widely distributed in the natural environment and can be produced by a variety of bacteria. As an intercellular signal molecule, indole regulates various aspects of bacterial physiology, including spore formation, plasmid stability, resistance to drugs, biofilm formation, and virulence.
Electrophilic aromatic substitution
Electrophilic aromatic substitution is an organic reaction in which an atom that is attached to an aromatic system (usually hydrogen) is replaced by an electrophile. Some of the most important electrophilic aromatic substitutions are aromatic nitration, aromatic halogenation, aromatic sulfonation, and alkylation and acylation Friedel–Crafts reaction. The most widely practised example of this reaction is the ethylation of benzene. Approximately 24,700,000 tons were produced in 1999.
Acid–base homeostasis
Acid–base homeostasis is the homeostatic regulation of the pH of the body's extracellular fluid (ECF). The proper balance between the acids and bases (i.e. the pH) in the ECF is crucial for the normal physiology of the body—and for cellular metabolism. The pH of the intracellular fluid and the extracellular fluid need to be maintained at a constant level. The three dimensional structures of many extracellular proteins, such as the plasma proteins and membrane proteins of the body's cells, are very sensitive to the extracellular pH.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.