Concept

Electrophilic aromatic substitution

Summary
Electrophilic aromatic substitution is an organic reaction in which an atom that is attached to an aromatic system (usually hydrogen) is replaced by an electrophile. Some of the most important electrophilic aromatic substitutions are aromatic nitration, aromatic halogenation, aromatic sulfonation, and alkylation and acylation Friedel–Crafts reaction. The most widely practised example of this reaction is the ethylation of benzene. Approximately 24,700,000 tons were produced in 1999. (After dehydrogenation and polymerization, the commodity plastic polystyrene is produced.) In this process, acids are used as catalyst to generate the incipient carbocation. Many other electrophilic reactions of benzene are conducted, although on a much smaller scale; they are valuable routes to key intermediates. The nitration of benzene is achieved via the action of the nitronium ion as the electrophile. The sulfonation with fuming sulfuric acid gives benzenesulfonic acid. Aromatic halogenation with bromine, chlorine, or iodine gives the corresponding aryl halides. This reaction is typically catalyzed by the corresponding iron or aluminum trihalide. The Friedel–Crafts reaction can be performed either as an acylation or as an alkylation. Often, aluminium trichloride is used, but almost any strong Lewis acid can be applied. For the acylation reaction a stoichiometric amount of aluminum trichloride is required. The overall reaction mechanism, denoted by the Hughes–Ingold mechanistic symbol SEAr, begins with the aromatic ring attacking the electrophile E+ (2a). This step leads to the formation of a positively charged and delocalized cyclohexadienyl cation, also known as an arenium ion, Wheland intermediate, or arene σ-complex (2b). Many examples of this carbocation have been characterized, but under normal operating conditions these highly acidic species will donate the proton attached to the sp3 carbon to the solvent (or any other weak base) to reestablish aromaticity. The net result is the replacement of H by E in the aryl ring (3).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (4)

Ring-Opening Reactions of Aminocyclopropanes and Aminocyclobutanes

Mingming Wang

Nitrogen-containing compounds are an important class of molecules in medicinal chemistry, chemical biology, biochemistry, material sciences or environmental sciences. Organic nitrogen occurs in many f
EPFL2022

Catalytic enantioselective Pictet-Spengler reaction of carbonyl compounds: Development and application to the asymmetric total synthesis of indole alkaloids

Rémi Julien Sylvain Andres

This thesis consists in an extensive study about the enantioselective Pictet-Spengler reaction (EPSR) and its application to the total synthesis of monoterpene indole alkaloids (MIAs). The general int
EPFL2022

Efficient Kinetic Resolution of Sulfur-Stereogenic Sulfoximines by Exploiting (CpRhIII)-Rh-X-Catalyzed C-H Functionalization

Nicolai Cramer, Marcus Brauns

Chiral sulfoximines with stereogenic sulfur atoms are promising motifs in drug discovery. We report an efficient method to access chiral sulfoximines through a C-H functionalization based kinetic reso
WILEY-V C H VERLAG GMBH2019
Show more
Related concepts (54)
Nucleophilic aromatic substitution
A nucleophilic aromatic substitution is a substitution reaction in organic chemistry in which the nucleophile displaces a good leaving group, such as a halide, on an aromatic ring. Aromatic rings are usually nucleophilic, but some aromatic compounds do undergo nucleophilic substitution. Just as normally nucleophilic alkenes can be made to undergo conjugate substitution if they carry electron-withdrawing substituents, so normally nucleophilic aromatic rings also become electrophilic if they have the right substituents.
Fries rearrangement
The Fries rearrangement, named for the German chemist Karl Theophil Fries, is a rearrangement reaction of a phenolic ester to a hydroxy aryl ketone by catalysis of Lewis acids. It involves migration of an acyl group of phenol ester to the aryl ring. The reaction is ortho and para selective and one of the two products can be favoured by changing reaction conditions, such as temperature and solvent. Despite many efforts, a definitive reaction mechanism for the Fries rearrangement has not been determined.
Indole
Indole is an aromatic, heterocyclic, organic compound with the formula . It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered pyrrole ring. Indole is widely distributed in the natural environment and can be produced by a variety of bacteria. As an intercellular signal molecule, indole regulates various aspects of bacterial physiology, including spore formation, plasmid stability, resistance to drugs, biofilm formation, and virulence.
Show more
Related courses (13)
CH-234: Organic functions and reactions II
To develop basic understanding of the reactivity of aromatic and heteroaromatic compounds. To develop a knowledge of a class of pericyclic reactions. To apply them in the context of the synthesis.
CH-110: Advanced general chemistry I
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
CH-112: Organic chemistry
L'objectif de ce cours est de fournir les connaissances et le moyen de comprendre, au niveau moléculaire, le fonctionnement des réactions chimiques organiques. Pendant le cours, l'étudiant réfléchira
Show more
Related lectures (94)
Electrophilic Substitution: Mechanisms and Selectivity
Explores electrophilic substitution reactions, emphasizing mechanisms and selectivity in aromatic compounds.
Organic Chemistry: Electrophilic Substitution
Explores strategies for total synthesis of complex molecules through electrophilic substitution reactions on aromatic compounds, discussing challenges and applications.
Chemical Shifts: More about NMR
Explores chemical shifts in NMR, covering local contributions, shielding effects, aromatic compounds, H-bonding impacts, and electron interactions.
Show more
Related MOOCs (1)
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology