Publication

Wind Energy Prediction in Highly Complex Terrain by Computational Fluid Dynamics

Abstract

With rising levels of wind power penetration in global electricity production, the relevance of wind power prediction is growing. More accurate forecasts reduce the required total amount of energy reserve capacity needed to ensure grid reliability and the risk of penalty for wind farm operators. This study analyzes the Computational Fluid Dynamics (CFD) software WindSim regarding its ability to perform accurate wind power predictions in complex terrain. Simulations of the wind field and wind farm power output in the Swiss Jura Mountains at the location of the Juvent Wind Farm during winter were performed. The study site features the combined presence of three complexities: topography, heterogeneous vegetation including forest, and interactions between wind turbine wakes. Hence, it allows a comprehensive evaluation of the software. Various turbulence models, forest models, and wake models, as well as the effects of domain size and grid resolution were evaluated against wind and power observations from nine Vestas V90’s 2.0-MW turbines. The results show that, with a proper combination of modeling options, WindSim is able to predict the performance of the wind farm with sufficient accuracy.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.