Flexure pivot oscillators have the potential to advantageously replace the traditional balance wheel-spiral spring oscillator used in mechanical watches due to their significantly lower friction. However, they have inherent nonlinear elastic properties that can introduce a variation of their frequency with amplitude called isochronism defect. Previous research has focused on controlling the elastic behavior of flexure pivot oscillators to reach isochronism. We present a new way of minimizing the isochronism defect of rotational oscillators by varying their inertia. This principle is embodied in a new family of oscillators we call rotation-dilation coupled oscillator (RDCO). Their architecture also presents a rotational symmetry that is advantageous for minimizing the effects of gravity on their period. We present a description of this new oscillator family, give conceptual tools for tuning its isochronism and show examples of physical implementations.
Simon Nessim Henein, Ilan Vardi
Simon Nessim Henein, Etienne Frédéric Gabriel Thalmann