Publication

Taylor-Fourier PMU on a Real-Time Simulator: Design, Implementation and Characterization

Guglielmo Frigo
2019
Conference paper
Abstract

The development of software models of Phasor Measurement Units (PMUs) within Real-Time Simulators (RTSs) represents a promising tool for the design and validation of monitoring and control applications in electrical power networks. In this sense, it is necessary to find an optimal trade-off between computational complexity and estimation accuracy. In this paper, we present the design and implementation of two new PMU models within the Opal-RT eMEGAsim RTS. The synchrophasor estimation algorithm relies on a Compressive Sensing Taylor- Fourier Model (CS-TFM) approach, and enables us to extract the dynamic phasor associated to the signal fundamental component. The estimation accuracy of the proposed models is characterized with respect to the compliance tests of the IEEE Std. C37.118.1.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.