Publication

Identification of novel PCTAIRE-1/CDK16 substrates using a chemical genetic screen

Abstract

PCTAIRE-1 (also known as cyclin-dependent protein kinase (CDK) 16), is a Ser/Thr kinase that has been implicated in many cellular processes, including cell cycle, spermatogenesis, neurite outgrowth, and vesicle trafficking. Most recently, it has been proposed as a novel X-linked intellectual disability (XLID) gene, where loss-of-function mutations have been identified in human patients. The precise molecular mechanisms that regulate PCTAIRE-1 remained largely obscure, and only a few cellular targets/substrates have been proposed with no clear functional significance. We and others recently showed that cyclin Y binds and activates PCTAIRE-1 via phosphorylation and 14-3-3 binding. In order to understand the physiological role that PCTAIRE-1 plays in brain, we have performed a chemical genetic screen in vitro using an engineered PCTAIRE-1/cyclin Y complex and mouse brain extracts. Our screen has identified potential PCTAIRE-1 substrates (AP2-Associated Kinase 1 (AAK1), dynamin 1, and synaptojanin 1) in brain that have been shown to regulate crucial steps of receptor endocytosis, and are involved in control of neuronal synaptic transmission. Furthermore, mass spectrometry and protein sequence analyses have identified potential PCTAIRE-1 regulated phosphorylation sites on AAK1 and we validated their PCTAIRE-1 dependence in a cellular study and/or brain tissue lysates. Our results shed light onto the missing link between PCTAIRE-1 regulation and proposed physiological functions, and provide a basis upon which to further study PCTAIRE-1 function in vivo and its potential role in neuronal/brain disorders.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Cyclin-dependent kinase
Cyclin-dependent kinases (CDKs) are the families of protein kinases first discovered for their role in regulating the cell cycle. They are also involved in regulating transcription, mRNA processing, and the differentiation of nerve cells. They are present in all known eukaryotes, and their regulatory function in the cell cycle has been evolutionarily conserved. In fact, yeast cells can proliferate normally when their CDK gene has been replaced with the homologous human gene.
Cyclin-dependent kinase 2
Cyclin-dependent kinase 2, also known as cell division protein kinase 2, or Cdk2, is an enzyme that in humans is encoded by the CDK2 gene. The protein encoded by this gene is a member of the cyclin-dependent kinase family of Ser/Thr protein kinases. This protein kinase is highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2, also known as Cdk1 in humans. It is a catalytic subunit of the cyclin-dependent kinase complex, whose activity is restricted to the G1-S phase of the cell cycle, where cells make proteins necessary for mitosis and replicate their DNA.
Cyclin A
Cyclin A is a member of the cyclin family, a group of proteins that function in regulating progression through the cell cycle. The stages that a cell passes through that culminate in its division and replication are collectively known as the cell cycle Since the successful division and replication of a cell is essential for its survival, the cell cycle is tightly regulated by several components to ensure the efficient and error-free progression through the cell cycle.
Show more
Related publications (44)

Robust designation of meiotic crossover sites by CDK-2 through phosphorylation of the MutS gamma complex

Alexander Woglar

Crossover formation is essential for proper segregation of homologous chromosomes during meiosis. Here, we show that Caenorhabditis elegans cyclin-dependent kinase 2 (CDK-2) partners with cyclin-like protein COSA-1 to promote crossover formation by promoti ...
NATL ACAD SCIENCES2022

Premature activation of Cdk1 leads to mitotic events in S phase and embryonic lethality

Patricia Renck Nunes

Cell cycle regulation, especially faithful DNA replication and mitosis, are crucial to maintain genome stability. Cyclin-dependent kinase (CDK)/cyclin complexes drive most processes in cellular proliferation. In response to DNA damage, cell cycle surveilla ...
Springer2019

Physiological regulation of the CDK16/PCTAIRE-1 protein kinase and its proposed role in the brain

Saifeldin Nasser Mohamed Ibrahim Shehata

Cell signalling, mediated to a large extent by protein kinase phosphorylation, plays a vital role in regulation of cellular function. PCTAIRE-1 (also known as cyclin-dependent protein kinase (CDK)16), is a Ser/Thr kinase that has been implicated in many ce ...
EPFL2017
Show more
Related MOOCs (30)
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.