Cyclin A is a member of the cyclin family, a group of proteins that function in regulating progression through the cell cycle. The stages that a cell passes through that culminate in its division and replication are collectively known as the cell cycle Since the successful division and replication of a cell is essential for its survival, the cell cycle is tightly regulated by several components to ensure the efficient and error-free progression through the cell cycle. One such regulatory component is cyclin A which plays a role in the regulation of two different cell cycle stages.
Cyclin A was first identified in 1983 in sea urchin embryos. Since its initial discovery, homologues of cyclin A have been identified in numerous eukaryotes including Drosophila, Xenopus, mice, and in humans but has not been found in lower eukaryotes like yeast. The protein exists in both an embryonic form and somatic form. A single cyclin A gene has been identified in Drosophila while Xenopus, mice and humans contain two distinct types of cyclin A: A1, the embryonic-specific form, and A2, the somatic form. Cyclin A1 is prevalently expressed during meiosis and early on in embryogenesis. Cyclin A2 is expressed in dividing somatic cells.
Cyclin A, along with the other members of the cyclin family, regulates cell cycle progression through physically interacting with cyclin-dependent kinases (CDKs), which thereby activates the enzymatic activity of its CDK partner.
The interaction between the cyclin box, a region conserved across cyclins, and a region of the CDK, called the PSTAIRE, confers the foundation of the cyclin-CDK complex. Cyclin A is the only cyclin that regulates multiple steps of the cell cycle. Cyclin A can regulate multiple cell cycle steps because it associates with, and thereby activates, two distinct CDKs – CDK2 and CDK1. Depending on which CDK partner cyclin A binds, the cell will continue through the S phase or it will transition from G2 to the M phase. Association of cyclin A with CDK2 is required for passage into S phase while association with CDK1 is required for entry into M phase.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course covers in detail molecular mechanisms of cancer development with emphasis on cell cycle control, genome stability, oncogenes and tumor suppressor genes.
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
Students will learn essentials of cell and developmental biology with an engineering mind set, with an emphasis on animal model systems and quantitative approaches.
p21Cip1 (alternatively p21Waf1), also known as cyclin-dependent kinase inhibitor 1 or CDK-interacting protein 1, is a cyclin-dependent kinase inhibitor (CKI) that is capable of inhibiting all cyclin/CDK complexes, though is primarily associated with inhibition of CDK2. p21 represents a major target of p53 activity and thus is associated with linking DNA damage to cell cycle arrest. This protein is encoded by the CDKN1A gene located on chromosome 6 (6p21.2) in humans. p21 is a potent cyclin-dependent kinase inhibitor (CKI).
Cyclin-dependent kinase 2, also known as cell division protein kinase 2, or Cdk2, is an enzyme that in humans is encoded by the CDK2 gene. The protein encoded by this gene is a member of the cyclin-dependent kinase family of Ser/Thr protein kinases. This protein kinase is highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2, also known as Cdk1 in humans. It is a catalytic subunit of the cyclin-dependent kinase complex, whose activity is restricted to the G1-S phase of the cell cycle, where cells make proteins necessary for mitosis and replicate their DNA.
The retinoblastoma protein (protein name abbreviated Rb; gene name abbreviated Rb, RB or RB1) is a tumor suppressor protein that is dysfunctional in several major cancers. One function of pRb is to prevent excessive cell growth by inhibiting cell cycle progression until a cell is ready to divide. When the cell is ready to divide, pRb is phosphorylated, inactivating it, and the cell cycle is allowed to progress. It is also a recruiter of several chromatin remodeling enzymes such as methylases and acetylases.
Crossover formation is essential for proper segregation of homologous chromosomes during meiosis. Here, we show that Caenorhabditis elegans cyclin-dependent kinase 2 (CDK-2) partners with cyclin-like protein COSA-1 to promote crossover formation by promoti ...
Bacteria are the most diverse and abundant kingdom of life and have adapted to survive and thrive in habitats around the globe. When provided with ample nutrients they grow and divide at staggering rates, increasing their population exponentially. Upon nut ...
PCTAIRE-1 (also known as cyclin-dependent protein kinase (CDK) 16), is a Ser/Thr kinase that has been implicated in many cellular processes, including cell cycle, spermatogenesis, neurite outgrowth, and vesicle trafficking. Most recently, it has been propo ...