Publication

Koopmans-Compliant Functionals and Potentials and Their Application to the GW100 Test Set

Abstract

Koopmans-compliant (KC) functionals have been shown to provide accurate spectral properties through a generalized condition of piecewise linearity of the total energy as a function of the fractional addition/removal of an electron to/from any orbital. We analyze the performance of different KC functionals on a large and standardized set of 100 molecules, the GW100 test set, comparing vertical ionization potentials (taken as opposite of the orbital energies) to those obtained from accurate quantum chemistry methods, and to experimental results. We find excellent agreement, with a mean absolute error of 0.20 eV for the KIPZ functional on the first ionization potential, which is state-of-the-art for both density functional theory (DFT)-based calculations and many-body perturbation theory. We highlight similarities and differences between KC functionals and other electronic-structure approaches, such as dielectric-dependent hybrid functionals and Green's function methods, both from a theoretical and from a practical point of view, arguing that KC potentials can be considered as local and orbital-dependent approximations to the electronic self-energy, already including approximate vertex corrections.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.