Publication

Exploring co-sputtering of ZnO:Al and SiO2 for efficient electron-selective contacts on silicon solar cells

Abstract

In recent years, considerable efforts have been devoted to developing novel electron-selective materials for crystalline Si(c-Si) solar cells with the attempts to simplify the fabrication process and improve efficiency. In this study, ZnO:Al (AZO) is co-sputtered with SiO2 to form AZO:SiO2 films with different SiO2 content. These nanometer-scale films, deposited on top of thin intrinsic hydrogenated amorphous silicon films and capped with low-work-function metal (such as Al and Mg), are demonstrated to function effectively as electron-selective contacts in c-Si solar cells. On the one hand, AZO:SiO2 plays an important role in such electron-selective contact and its thickness is a critical parameter, with a thickness of 2 nm showing the best performance. On the other hand, at the optimal thickness of AZO:SiO2, the open circuit voltage (V-OC) of the solar cells is found to be relatively insensitive to material properties of AZO:SiO2. Whereas, regarding the fill factor (FF), AZO without SiO2 content exhibits to be the optimal choice. By using AZO/Al as electron-selective contact, we successfully realize a 19.5%-efficient solar cell with V-OC over 700 mV and FF around 75%, which is the best result among c-Si solar cells using ZnO as electron-selective contact. Also, this work implies that efficient carrier-selective film can be made by magnetron sputtering method.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.