Publication

Physics of Dissipative Kerr Solitons in Optical Microresonators and Application to Frequency Synthesis

Abstract

Optical-frequency combs, that is spectra of equidistant coherent optical lines, have revolutionized the precision measurements of time and frequency. In 2007 a new method to generate optical frequency combs was discovered. In contrast to conventional generation methods based on pulsed laser sources, these Kerr combs' or microcombs' are generated entirely via nonlinear frequency conversion in a microresonator pumped by a continuous-wave laser. More recently, the discovery of dissipative soliton formation in these cavities has enabled the generation of low-noise comb states with reproducible spectral envelopes, required in applications. Solitons are pulses of light which retain their shape as they circulate in the resonator, owing to the balance between counter-acting effects. On the one hand, the tendency of the pulse to spread due to anomalous group velocity dispersion is counteracted by the nonlinear self-phase modulation. On the other hand, the losses in the cavity are lifted by the nonlinear parametric gain provided by the driving laser. These states are robust attractors of the nonlinear cavity system under specific driving conditions. In this thesis, the properties and dynamics of dissipative soliton states are studied experimentally in crystalline magnesium fluoride whispering gallery mode resonators. Several methods are developed to accurately determine and control the driving parameters as well as to improve the comb stability. The observations provide an accurate verification of the Lugiato-Lefever equation commonly used to describe the system. Furthermore, unexpected deviations from this canonical model are observed and accounted for with an enriched framework. The improved fundamental understanding and control of the system is applied for the generation of an ultralow-noise microcomb driven with an ultra-stable laser. In combination with a novel transfer oscillator method, this comb is used to synthesize ultralow-noise microwaves via optical frequency division. Lastly, a novel method for synthesizing multiple distinct frequency combs from a single resonator and with a single laser is devised. It relies on multiplexing solitons in different spatial modes of the microresonator. Up to three combs are generated simultaneously from a single device for the first time.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser is an anacronym that originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow. A laser differs from other sources of light in that it emits light that is coherent.
Frequency comb
In optics, a frequency comb is a laser source whose spectrum consists of a series of discrete, equally spaced frequency lines. Frequency combs can be generated by a number of mechanisms, including periodic modulation (in amplitude and/or phase) of a continuous-wave laser, four-wave mixing in nonlinear media, or stabilization of the pulse train generated by a mode-locked laser. Much work has been devoted to this last mechanism, which was developed around the turn of the 21st century and ultimately led to one half of the Nobel Prize in Physics being shared by John L.
Laser diode
A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with electrical current can create lasing conditions at the diode's junction. Driven by voltage, the doped p–n-transition allows for recombination of an electron with a hole. Due to the drop of the electron from a higher energy level to a lower one, radiation, in the form of an emitted photon is generated. This is spontaneous emission.
Show more
Related publications (32)

Electric-field-induced second-order nonlinear processes in stoichiometric silicon nitride

Boris Zabelich

Nonlinear optical frequency conversion is one of the driving research areas in photonics. Its quasi instantaneous response and the promise of low power consumption in integrated structures could cover the demand for fast signal processing with minimal ener ...
EPFL2024

Wavelength-stabilized figure-of-9 thulium-doped all-fiber laser emitting 560 fs pulses

Camille Sophie Brès, Moritz Bartnick, Gayathri Bharathan

We demonstrate a figure-of-9 all-fiber thulium-doped laser (TDFL) that generates 560 fs long pulses at 1948 nm wavelength. In order to achieve self-starting passive mode-locking, we utilize an in-fiber Faraday rotator to induce a nonreciprocal phase shift. ...
Bristol2024

Nonlinear optical diode effect in a magnetic Weyl semimetal

Philip Johannes Walter Moll, Chunyu Guo, Hao Yang

Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically co ...
Nature Portfolio2024
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.