**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Frequency comb

Summary

In optics, a frequency comb is a laser source whose spectrum consists of a series of discrete, equally spaced frequency lines. Frequency combs can be generated by a number of mechanisms, including periodic modulation (in amplitude and/or phase) of a continuous-wave laser, four-wave mixing in nonlinear media, or stabilization of the pulse train generated by a mode-locked laser. Much work has been devoted to this last mechanism, which was developed around the turn of the 21st century and ultimately led to one half of the Nobel Prize in Physics being shared by John L. Hall and Theodor W. Hänsch in 2005.
The frequency domain representation of a perfect frequency comb is a series of delta functions spaced according to
:
f_n = f_0 + n,f_r,
where n is an integer, f_r is the comb tooth spacing (equal to the mode-locked laser's repetition rate or, alternatively, the modulation frequency), and f_0 is the carrier offset frequency, which i

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (32)

Related concepts (4)

Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field

Mode locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10−12 s) or femtoseconds (10−15 s). A

An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with diffe

Related publications (100)

Loading

Loading

Loading

Related units (12)

Related courses (14)

MICRO-426: Laser fundamentals and applications for engineers

The course will cover the fundamentals of lasers and focus on selected practical applications using lasers in engineering. The course is divided approximately as 1/3 theory and 2/3 covering selected applications.

PHYS-607: Nonlinear fibre optics

Presentation of the different sources of optical nonlinearities in an optical fibre

PHYS-470: Nonlinear optics for quantum technologies

This course provides the fundamental knowledge and theoretical tools needed to treat nonlinear optical interactions, covering both classical and quantum theory of nonlinear optics. It presents applications such as nonclassical state generation and coherent frequency conversion.

Examination of various issues related to the generation and application of optical frequency combs (OFCs) is an important branch of modern optoelectronics. Some of the proposed OFC generation methods apply acousto-optic (AO) devices. The AO devices are used either as the element devoted to the OFC phase stabilization or they play the role of an optical radiation frequency shifting element in the frequency-shifting loop (FSL) scheme. The results of two experiments related to the application of AO cells in the FSI, scheme are represented in this paper. The first experiment confirms the previously proposed effect of AO mismatch influence on all the OFC characteristics. The second experiment shows the possibility of tunable AO dual comb downconversion with a single AO device. (C) 2022 Optica Publishing Group

The integration of new materials mediating light-matter interaction in nanoscale devices is a persistent goal in nanophotonics. One of these materials is Gallium phosphide, which offers an attractive combination of a high refractive index (n=3.05 at a wavelength of 1550 nm) and a large bandgap (Eg =2.26 eV), enabling photonic devices with strongly confined light fields, not suffering from heating due to two-photon absorption at telecommunication wavelengths. Furthermore, due to its non-centrosymmetric crystal structure, it has a non-vanishing second-order susceptibility and is piezoelectric. Related to its large refractive index is a high third-order susceptibility. Prior to this work the use of GaP for photonic devices was limited to individual non-integrated components, as GaP was not available on a substrate with substantially lower refractive index equivalent to SOI-wafers for silicon.
In this work a process was developed that allows the integration of GaP devices onto SiO2. It exploits direct wafer bonding of a GaP/AlxGa1-xP/GaP heterostructure onto a SiO2-on-Si wafer. After substrate removal, photonic devices are patterned by dry-etching in the top GaP device layer. The GaP devices investigated here are used to explore nonlinear optics and optomechanics.
In the area of nonlinear optics, second- and third-harmonic generation are observed. The Kerr coefficient is experimentally estimated as n2[1550nm] = 1.2(5)x10^17m^2/W, for the first time in a precision measurement at telecommunication wavelengths. Four-wave mixing is used for broadband frequency comb generation, where a power threshold as low as 3 mW is obtained. The combination of four-wave mixing and second-harmonic generation leads to frequency-doubled combs.
The optomechanical properties of GaP one-dimensional photonic crystal cavities are optimized by simulations and fabricated devices are characterized. Optical quality factors of Qo>10^5 and optomechanical coupling strengths of g0/2pi=400 kHz are measured. Dynamical backaction in the form of the spring effect and the parametric amplification are observed, as well as optomechanically induced transparency and absorption. A device design for a microwave-to-optical transducer is developed, relying on the piezoelectricity of GaP. It combines electromechanical and optomechanical transduction. The predicted electromechanical coupling strength is in the MHz range.
Furthermore, photonic crystal cavity designs containing a slot at the center of the cavity are studied. According to simulations for slot widths below 30 nm, optomechanical coupling
strengths g0/2pi>1 MHz could be achieved. Fabricated silicon photonic crystal cavities show high quality factors of Qo=8x10^4 while hosting a mechanical eigenmode with a frequency of 2.7 GHz. Because of process technology limitations, only slot widths as narrow as 40 nm can be fabricated, the achieved g0/2pi is limited to 300 kHz.
The new GaP-on-insulator material platform opens the door to integrated GaP devices. Frequency combs are of interest for soliton comb formation, mid-IR frequency combs, and ultra-broadband supercontinuum generation. Microwave-to-optical transducers are on the one hand desired for quantum information processing, on the other hand they are applicable as efficient modulators or detectors for classical signals.

Related lectures (24)

, , , ,

In general, there are different, relatively independent forms of orbital angular momenta at a given propagation distance, which might exhibit different dynamic spatial characteristics. One type involves a beam with a helical phase-front that rotates around its own beam center, such as a Laguerre-Gaussian (LG) beam with an azimuthal index not equal to zero. The other one is a Gaussian-like beam dot that revolves around a central axis. Here, we experimentally demonstrate the generation of a dynamic spatiotemporal (ST) structured beam that simultaneously exhibits both rotation and revolution at a given propagation distance. Nine Kerr frequency comb lines are coherently combined, each carrying a designed superposition of multiple LG modes containing one unique l value and multiple p values. Experimental results showthat the mode purity of the reconstructed revolving and rotating LG(30) beam is similar to 89% when both the beam waist and revolving radius (R) are 0.4 mm. Moreover, we explore the effects of the number of frequency comb lines and the R value on the mode purity of the generated ST beam. Consequently, we find that a higher mode purity can be achieved by involving more frequency comb lines or reducing the R. (C) 2022 Optica Publishing Group