In optics, a frequency comb is a laser source whose spectrum consists of a series of discrete, equally spaced frequency lines. Frequency combs can be generated by a number of mechanisms, including periodic modulation (in amplitude and/or phase) of a continuous-wave laser, four-wave mixing in nonlinear media, or stabilization of the pulse train generated by a mode-locked laser. Much work has been devoted to this last mechanism, which was developed around the turn of the 21st century and ultimately led to one half of the Nobel Prize in Physics being shared by John L. Hall and Theodor W. Hänsch in 2005.
The frequency domain representation of a perfect frequency comb is a series of delta functions spaced according to
where is an integer, is the comb tooth spacing (equal to the mode-locked laser's repetition rate or, alternatively, the modulation frequency), and is the carrier offset frequency, which is less than .
Combs spanning an octave in frequency (i.e., a factor of two) can be used to directly measure (and correct for drifts in) . Thus, octave-spanning combs can be used to steer a piezoelectric mirror within a carrier–envelope phase-correcting feedback loop. Any mechanism by which the combs' two degrees of freedom ( and ) are stabilized generates a comb that is useful for mapping optical frequencies into the radio frequency for the direct measurement of optical frequency.
Mode-locking
The most popular way of generating a frequency comb is with a mode-locked laser. Such lasers produce a series of optical pulses separated in time by the round-trip time of the laser cavity. The spectrum of such a pulse train approximates a series of Dirac delta functions separated by the repetition rate (the inverse of the round-trip time) of the laser.
This series of sharp spectral lines is called a frequency comb or a frequency Dirac comb.
The most common lasers used for frequency-comb generation are Ti:sapphire solid-state lasers or Er:fiber lasers with repetition rates typically between 100 MHz and 1 GHz or even going as high as 10 GHz.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course gives an introduction to transducers by both considering fundamental principles and their application in classical and quantum systems. The course builds up on the fundamental concept of c
The course will cover the fundamentals of lasers and focus on selected practical applications using lasers in engineering. The course is divided approximately as 1/3 theory and 2/3 covering selected
Since the discovery of dissipative Kerr solitons in optical microresonators, significant progress has been made in the understanding of the underlying physical principles from the fundamental side and generation of broadband coherent optical Kerr frequency ...
The interaction of light and matter enables nonlinear frequency conversion and the creation of coherent currents. The optical control of electric currents is of fundamental relevance and prominent research focus in the last decades. These photocurrents ena ...
We demonstrate a figure-of-9 all-fiber thulium-doped laser (TDFL) that generates 560 fs long pulses at 1948 nm wavelength. In order to achieve self-starting passive mode-locking, we utilize an in-fiber Faraday rotator to induce a nonreciprocal phase shift. ...