Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In this work, we provide a comparison between the stability and the interfacial structure of micrometer-sized and nanometer-sized droplets by employing a multi-instrumental approach comprised of the surface-sensitive technique of sum frequency scattering as well as dynamic light scattering and microscopy. We monitor the stability of oil-in-water and water-in-oil emulsions and the structure of surfactants at the oil/water nano-interface, when stabilized with an oil-soluble neutral surfactant (Span80), a water-soluble anionic surfactant (sodium dodecyl sulfate, SDS), or with a combination of the two. Micron-sized droplets are found to be stabilized only when a surfactant soluble in the continuous phase is present in the system, in agreement with what is traditionally observed empirically. Surprisingly, the nanodroplets behave differently. Both oil and water nanodroplets can be stabilized by the same (neutral Span80) surfactant but with different surface structures. A combination of SDS and Span80 also suffices, but for the case of water droplets, the strongly amphiphilic SDS molecules are not detected at the interface. For the case of oil droplets, both surfactants are at the interface but do not structurally affect one another. Thus, it appears that, in this study, empirical rules such as the Bancroft rule, the hydrophile-lipophile-balance scale, and the surfactant affinity difference predict the stability of the micrometer-sized droplets better than the nanometer-sized ones, probably due to a different balance of interactions on different length scales. (C) 2019 Author(s).
Esther Amstad, Gaia De Angelis