Publication

The interfacial structure of nano-and micron-sized oil and water droplets stabilized with SDS and Span80

Abstract

In this work, we provide a comparison between the stability and the interfacial structure of micrometer-sized and nanometer-sized droplets by employing a multi-instrumental approach comprised of the surface-sensitive technique of sum frequency scattering as well as dynamic light scattering and microscopy. We monitor the stability of oil-in-water and water-in-oil emulsions and the structure of surfactants at the oil/water nano-interface, when stabilized with an oil-soluble neutral surfactant (Span80), a water-soluble anionic surfactant (sodium dodecyl sulfate, SDS), or with a combination of the two. Micron-sized droplets are found to be stabilized only when a surfactant soluble in the continuous phase is present in the system, in agreement with what is traditionally observed empirically. Surprisingly, the nanodroplets behave differently. Both oil and water nanodroplets can be stabilized by the same (neutral Span80) surfactant but with different surface structures. A combination of SDS and Span80 also suffices, but for the case of water droplets, the strongly amphiphilic SDS molecules are not detected at the interface. For the case of oil droplets, both surfactants are at the interface but do not structurally affect one another. Thus, it appears that, in this study, empirical rules such as the Bancroft rule, the hydrophile-lipophile-balance scale, and the surfactant affinity difference predict the stability of the micrometer-sized droplets better than the nanometer-sized ones, probably due to a different balance of interactions on different length scales. (C) 2019 Author(s).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Surfactant
Surfactants are chemical compounds that decrease the surface tension or interfacial tension between two liquids, a liquid and a gas, or a liquid and a solid. Surfactants may function as emulsifiers, wetting agents, detergents, foaming agents, or dispersants. The word "surfactant" is a blend of surface-active agent, coined 1950. Surfactants are usually organic compounds that are akin to amphiphilic, which means that this molecule, being as double-agent, each contains a hydrophilic "water-seeking" group (the head), and a hydrophobic "water-avoiding" group (the tail).
Emulsion
An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Although the terms colloid and emulsion are sometimes used interchangeably, emulsion should be used when both phases, dispersed and continuous, are liquids. In an emulsion, one liquid (the dispersed phase) is dispersed in the other (the continuous phase).
Sodium dodecyl sulfate
Sodium dodecyl sulfate (SDS) or sodium lauryl sulfate (SLS), sometimes written sodium laurilsulfate, is an organic compound with the formula and structure . It is an anionic surfactant used in many cleaning and hygiene products. This compound is the sodium salt of the 12-carbon organosulfate. Its hydrocarbon tail combined with a polar "headgroup" give the compound amphiphilic properties that make it useful as a detergent. SDS is also component of mixtures produced from inexpensive coconut and palm oils.
Show more
Related publications (36)

A Versatile Approach to Stabilize Liquid-Liquid Interfaces using Surfactant Self-Assembly

Julian Charles Shillcock

Stabilizing liquid-liquid interfaces, whether between miscible or immiscible liquids, is crucial for a wide range of applications, including energy storage, microreactors, and biomimetic structures. In this study, a versatile approach for stabilizing the w ...
Wiley-V C H Verlag Gmbh2024

Influence of the hydrophile-lipophile balance of perfluorinated surfactants on the emulsion stability

Esther Amstad, Gaia De Angelis

Emulsions are omnipresent in our everyday life; for example, in food, certain drug and cosmetic formulations, agriculture, and as paints. Moreover, they are frequently used to perform high-throughput screening assays with minimum sample volumes. Key to the ...
Springer Heidelberg2024

Revealing the Formation Dynamics of Janus Polymer Particles: Insights from Experiments and Molecular Dynamics

Philip Robin Loche

Seeded emulsion polymerization is one of the best-known methods for preparing polymer particles with a controlled size, composition, and shape. It first requires the preparation of seed particles, which are then swollen with additional monomer (the same as ...
Washington2023
Show more