Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Preventing the degradation of metal perovskite solar cells (PSCs) by humid air poses a substantial challenge for their future deployment. We introduce here a two-dimensional (2D) A(2)PbI(4) perovskite layer using pentafluoro-phenylethylammonium (FEA) as a fluoroarene cation inserted between the 3D light-harvesting perovskite film and the hole-transporting material (HTM). The perfluorinated benzene moiety confers an ultrahydrophobic character to the spacer layer, protecting the perovskite light-harvesting material from ambient moisture while mitigating ionic diffusion in the device. Unsealed 3D/2D PSCs retain 90% of their efficiency during photovoltaic operation for 1000 hours in humid air under simulated sunlight. Remarkably, the 2D layer also enhances interfacial hole extraction, suppressing nonradiative carrier recombination and enabling a power conversion efficiency (PCE) > 22%, the highest reported for 3D/2D architectures. Our new approach provides water-and heat-resistant operationally stable PSCs with a record-level PCE.
Bin Ding, Xianfu Zhang, Bo Chen, Yan Liu
Mohammad Khaja Nazeeruddin, Jianxing Xia, Muhammad Sohail
Shaik Mohammed Zakeeruddin, Zhongjin Shen, Yelin Hu, Hongwei Zhu, Yinghui Wu, Jialin Wang, Miao Chen