Publication

Tampered Speaker Inconsistency Detection with Phonetically Aware Audio-visual Features

Sébastien Marcel
2019
Conference paper
Abstract

The recent increase in social media based propaganda, i.e., ‘fake news’, calls for automated methods to detect tampered content. In this paper, we focus on detecting tampering in a video with a person speaking to a camera. This form of manipulation is easy to perform, since one can just replace a part of the audio, dramatically chang- ing the meaning of the video. We consider several detection approaches based on phonetic features and recurrent networks. We demonstrate that by replacing standard MFCC features with embeddings from a DNN trained for automatic speech recognition, combined with mouth landmarks (visual features), we can achieve a significant performance improvement on several challenging publicly available databases of speakers (VidTIMIT, AMI, and GRID), for which we generated sets of tampered data. The evaluations demonstrate a relative equal error rate reduction of 55% (to 4.5% from 10.0%) on the large GRID corpus based dataset and a satisfying generalization of the model on other datasets.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.