There are many types of artificial neural networks (ANN).
Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research. Most artificial neural networks bear only some resemblance to their more complex biological counterparts, but are very effective at their intended tasks (e.g. classification or segmentation).
Some artificial neural networks are adaptive systems and are used for example to model populations and environments, which constantly change.
Neural networks can be hardware- (neurons are represented by physical components) or software-based (computer models), and can use a variety of topologies and learning algorithms.
Feedforward neural network
The feedforward neural network was the first and simplest type. In this network the information moves only from the input layer directly through any hidden layers to the output layer without cycles/loops. Feedforward networks can be constructed with various types of units, such as binary McCulloch–Pitts neurons, the simplest of which is the perceptron. Continuous neurons, frequently with sigmoidal activation, are used in the context of backpropagation.
Group method of data handling
The Group Method of Data Handling (GMDH) features fully automatic structural and parametric model optimization. The node activation functions are Kolmogorov–Gabor polynomials that permit additions and multiplications. It uses a deep multilayer perceptron with eight layers. It is a supervised learning network that grows layer by layer, where each layer is trained by regression analysis. Useless items are detected using a validation set, and pruned through regularization.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
There are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
En intelligence artificielle et en apprentissage machine, Word2vec est un groupe de modèles utilisé pour le plongement lexical (word embedding). Ces modèles ont été développés par une équipe de recherche chez Google sous la direction de . Ce sont des réseaux de neurones artificiels à deux couches entraînés pour reconstruire le contexte linguistique des mots. La méthode est implémentée dans la bibliothèque Python Gensim. Deux architectures ont été initialement proposées pour apprendre les Word2vec, le modèle de sacs de mots continus (CBOW: continuous bag of words) et le modèle skip-gram.
Un réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Since 2010 approaches in deep learning have revolutionized fields as diverse as computer vision, machine learning, or artificial intelligence. This course gives a systematic introduction into influent
Convolutional neural networks (CNNs) are powerful tools in Deep Learning mainly due to their ability to exploit the translational symmetry present in images, as they are equivariant to translations. O
Déplacez-vous dans la recherche graphique, les réseaux neuronaux et l'apprentissage profond, couvrant des sujets tels que les réseaux neuronaux convolutionnels et les réseaux neuronaux artificiels.
Couvre les questions pratiques et les objectifs de l'apprentissage profond, y compris les types de neurones, l'architecture du réseau, l'optimisation et l'initialisation du poids.