Publication

MATHICSE Technical Report : Fast solvers for 2D fractional differential equations using rank structured matrices

Marco Mazza, Stefano Massei
2018
Report or working paper
Abstract

We consider the discretization of time-space diffusion equations with fractional derivatives in space and either 1D or 2D spatial domains. The use of implicit Euler scheme in time and finite differences or finite elements in space, leads to a sequence of dense large scale linear systems describing the behavior of the solution over a time interval. We prove that the coefficient matrices arising in the 1D context are rank structured and can be efficiently represented using hierarchical formats (H-matrices, HODLR). Quantitative estimates for the rank of the off-diagonal blocks of these matrices are presented. We analyze the use of HODLR arithmetic for solving the 1D case and we compare this strategy with existing methods that exploit the Toeplitz-like structure to precondition the GMRES iteration. The numerical tests demonstrate the convenience of the HODLR format when at least a reasonably low number of time steps is needed. Finally, we explain how these properties can be leveraged to design fast solvers for problems with 2D spatial domains that can be reformulated as matrix equations. The experiments show that the approach based on the

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.