Publication

Design and Structural Optimization of Topological Interlocking Assemblies

Abstract

We study assemblies of convex rigid blocks regularly arranged to approximate a given freeform surface. Our designs rely solely on the geometric arrangement of blocks to form a stable assembly, neither requiring explicit connectors or complex joints, nor relying on friction between blocks. The convexity of the blocks simplifies fabrication, as they can be easily cut from different materials such as stone, wood, or foam. However, designing stable assemblies is challenging, since adjacent pairs of blocks are restricted in their relative motion only in the direction orthogonal to a single common planar interface surface. We show that despite this weak interaction, structurally stable, and in some cases, globally interlocking assemblies can be found for a variety of freeform designs. Our optimization algorithm is based on a theoretical link between static equilibrium conditions and a geometric, global interlocking property of the assembly-that an assembly is globally interlocking if and only if the equilibrium conditions are satisfied for arbitrary external forces and torques. Inspired by this connection, we define a measure of stability that spans from single-load equilibrium to global interlocking, motivated by tilt analysis experiments used in structural engineering. We use this measure to optimize the geometry of blocks to achieve a static equilibrium for a maximal cone of directions, as opposed to considering only self-load scenarios with a single gravity direction. In the limit, this optimization can achieve globally interlocking structures. We show how different geometric patterns give rise to a variety of design options and validate our results with physical prototypes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (36)
Economic equilibrium
In economics, economic equilibrium is a situation in which economic forces such as supply and demand are balanced and in the absence of external influences the (equilibrium) values of economic variables will not change. For example, in the standard text perfect competition, equilibrium occurs at the point at which quantity demanded and quantity supplied are equal. Market equilibrium in this case is a condition where a market price is established through competition such that the amount of goods or services sought by buyers is equal to the amount of goods or services produced by sellers.
Structural engineering
Structural engineering is a sub-discipline of civil engineering in which structural engineers are trained to design the 'bones and muscles' that create the form and shape of human-made structures. Structural engineers also must understand and calculate the stability, strength, rigidity and earthquake-susceptibility of built structures for buildings and nonbuilding structures. The structural designs are integrated with those of other designers such as architects and building services engineer and often supervise the construction of projects by contractors on site.
General equilibrium theory
In economics, general equilibrium theory attempts to explain the behavior of supply, demand, and prices in a whole economy with several or many interacting markets, by seeking to prove that the interaction of demand and supply will result in an overall general equilibrium. General equilibrium theory contrasts with the theory of partial equilibrium, which analyzes a specific part of an economy while its other factors are held constant.
Show more
Related publications (59)

Collective motion in a sheet of microswimmers

Viktor Skultéty

Self-propelled particles such as bacteria or algae swimming through a fluid are non-equilibrium systems where particle motility breaks microscopic detailed balance, often resulting in large-scale collective motion. Previous theoretical work has identified ...
Berlin2024

Structural topology exploration through policy-based generation of equilibrium representations

Corentin Jean Dominique Fivet, Ioannis Mirtsopoulos

Mainstream approaches to design spatial architectural forms that are structurally relevant consist either in adapting well-known and catalogued conventional types or in searching for close-to-optimum solutions of well-defined problems. Few means exist to e ...
2023

Computational Conceptual Design – Typological Exploration Of Spatial Truss Systems Through Optimization

Corentin Jean Dominique Fivet, Pierluigi D'Acunto, Jonas Warmuth

Exploring a wide range of relevant design options from the outset is crucial for every sound conceptual design process. Optimization techniques are generally employed to generate well-performing structural design options. However, focusing only on performa ...
2023
Show more
Related MOOCs (18)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more