Publication

Waveguide-Based Platform for Large-FOV Imaging of Optically Active Defects in 2D Materials

Abstract

Single-molecule localization microscopy (SMLM) is a powerful tool that is routinely used for nanoscale optical imaging of biological samples. Recently, this approach has been applied to study optically active defects in two-dimensional (2D) materials. Such defects can not only alter the mechanical and optoelectronic properties of 2D materials but also bring new functionalities, which make them a promising platform for integrated nanophotonics and quantum sensing. Most SMLM approaches, however, provide a field of view limited to similar to 50 x 50 mu m(2), which is not sufficient for high-throughput characterization of 2D materials. Moreover, the 2D materials themselves pose an additional challenge as their nanometer-scale thickness prevents efficient far-field excitation of optically active defects. To overcome these limitations, we present here a waveguide-based platform for large field-of-view imaging of 2D materials via total internal reflection excitation. We use this platform to perform large-scale characterization of point defects in chemical vapor deposition-grown hexagonal boron nitride on an area of up to 100 x 1000 mu m(2) and demonstrate its potential for correlative imaging and high throughput characterization of defects in 2D materials.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.