Publication

Non-Exponential Variations for Classical Results in First Passage Percolation

Jacques Saliba
2020
Thèse EPFL
Résumé

We study in this thesis the asymptotic behavior of optimal paths on a random graph model, the configuration model, for which we assign continuous random positive weights on its edges. We start by describing the asymptotic behavior of the diameter and the flooding time on the graph for a set of light-tailed edge-weights, and we prove that it is the largest class of densities for which these precise asymptotic expressions for the diameter/flooding time hold. We then show how the weighted optimal path can be constructed using a particular positive recurrent Markov chain. We finally study, in the last chapter, the noise sensitivity of the model by replacing every edge-weight independently by a new realization of the same distribution, with probability epsilon. We show that the optimal paths between two vertices before and after this modification are asymptotically ''independent'' conditioning on the graph, as the number of vertices tends to infinity.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.