Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This paper develops an effective distributed strategy for the solution of constrained multiagent stochastic optimization problems with coupled parameters across the agents. In this formulation, each agent is influenced by only a subset of the entries of a global parameter vector or model, and is subject to convex constraints that are only known locally. Problems of this type arise in several applications, most notably in disease propagation models, minimum-cost flow problems, distributed control formulations, and distributed power system monitoring. This paper focuses on stochastic settings, where a stochastic risk function is associated with each agent and the objective is to seek the minimizer of the aggregate sum of all risks subject to a set of constraints. Agents are not aware of the statistical distribution of the data and, therefore, can only rely on stochastic approximations in their learning strategies. We derive an effective distributed learning strategy that is able to track drifts in the underlying parameter model. A detailed performance and stability analysis is carried out showing that the resulting coupled diffusion strategy converges at a linear rate to an neighborhood of the true penalized optimizer.
Jean-François Molinari, Antonio Joaquin Garcia Suarez, Tobias Brink
Anthony Christopher Davison, Soumaya Elkantassi