Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Photonic chip-based soliton microcombs have shown rapid progress and have already been used in many system-level applications. There has been substantial progress in realizing soliton microcombs that rely on compact laser sources, culminating in devices that only utilize a semiconductor gain chip or a self-injection-locked laser diode as the pump source. However, generating single solitons with electronically detectable repetition rates from a compact laser module has remained challenging. Here we demonstrate a current-initiated, Si(3)N(4 )chip-based, 99-GHz soliton microcomb driven directly by a compact, semiconductor-based laser. This approach does not require any complex soliton tuning techniques, and single solitons can be accessed by tuning the laser current. Further, we demonstrate a generic, simple, yet reliable, packaging technique to facilitate the fiber-chip interface, which allows building a compact soliton microcomb package that can benefit from the fiber systems operating at high power (> 100 mW). Both techniques can exert immediate impact on chip-based nonlinear photonic applications that require high input power, high output power, and interfacing chip-based devices to mature fiber systems. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
, , , , , ,
Kirsten Emilie Moselund, Chang Won Lee
Tobias Kippenberg, Anat Siddharth