Publication

Optimal lower bounds on hitting probabilities for stochastic heat equations in spatial dimension k >= 1

Robert Dalang, Fei Pu
2020
Journal paper
Abstract

We establish a sharp estimate on the negative moments of the smallest eigenvalue of the Malliavin matrix gamma z of Z := (u(s, y), u(t , x) - u(s, y)), where u is the solution to a system of d non-linear stochastic heat equations in spatial dimension k >= 1. We also obtain the optimal exponents for the L-p-modulus of continuity of the increments of the solution and of its Malliavin derivatives. These lead to optimal lower bounds on hitting probabilities of the process {u(t,x) : (t, x) is an element of [0, infinity[xR(k)} in the non-Gaussian case in terms of Newtonian capacity, and improve a result in Dalang, Khoshnevisan and Nualart [Stoch PDE: Anal Comp 1 (2013) 94-151].

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (29)
Heat equation
In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. As the prototypical parabolic partial differential equation, the heat equation is among the most widely studied topics in pure mathematics, and its analysis is regarded as fundamental to the broader field of partial differential equations.
Differential equation
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.
Partial differential equation
In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similar to how x is thought of as an unknown number to be solved for in an algebraic equation like x2 − 3x + 2 = 0. However, it is usually impossible to write down explicit formulas for solutions of partial differential equations.
Show more
Related publications (32)

THE WEYL LAW OF TRANSMISSION EIGENVALUES AND THE COMPLETENESS OF GENERALIZED TRANSMISSION EIGENFUNCTIONS WITHOUT COMPLEMENTING CONDITIONS

Hoài-Minh Nguyên, Jean Louis-Alexandre Fornerod

The transmission eigenvalue problem is a system of two second-order elliptic equations of two unknowns equipped with the Cauchy data on the boundary. In this work, we establish the Weyl law for the eigenvalues and the completeness of the generalized eigenf ...
Philadelphia2023

The elliptical Ornstein-Uhlenbeck process

Sofia Charlotta Olhede

We introduce the elliptical Ornstein-Uhlenbeck (OU) process, which is a generalisation of the well-known univariate OU process to bivariate time series. This process maps out elliptical stochastic oscillations over time in the complex plane, which are obse ...
INT PRESS BOSTON, INC2023

Acceleration of gossip algorithms through the Euler-Poisson-Darboux Equation

Raphaël Jean Berthier

Gossip algorithms and their accelerated versions have been studied exclusively in discrete time on graphs. In this work, we take a different approach and consider the scaling limit of gossip algorithms in both large graphs and large number of iterations. T ...
OXFORD UNIV PRESS2022
Show more
Related MOOCs (17)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more