Publication

Evaporation of Metals during the Thermal Treatment of Oxide Nanomaterials in Cellulose-Based Matrices

Christian Ludwig, Mohamed Tarik
2020
Journal paper
Abstract

Like conventional material products, waste is the last stage of the life cycle of engineered nanomaterials, which are then incinerated or stabilized before disposal. However, because of their special physical characteristics, the fate of the thermally treated nanomaterials may differ or not from the conventional ones. In this study the thermal release of metals from three nanomaterials, namely CuO, ZnO, and TiO2, embedded in matrices containing organic and inorganic compounds was investigated by using an in-house developed setup. The latter, which combines a TGA (Thermogravimetric Analyzer) and an ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometer), offers the possibility to gain simultaneously thermogravimetric and elemental information. It is shown that the matrix composition, such as chlorine and silicon, plays a key role in the evaporation of Cu and Zn at temperatures above 700 °C, while at relatively low temperatures (250 to 450 °C) the nanomaterials are most probably entrained in the flue gas independently of their chemical properties. Incineration experiments using a tubular furnace and subsequent ICP-MS (ICP Mass Spectrometry) analysis of the obtained residues allowed for quantification of the metal evaporation from the three nanomaterials.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.