Publication

In vivo detection of d-amino acid oxidase with hyperpolarized d-[1-C-13]alanine

Abstract

d-amino acid oxidase (DAO) is a peroxisomal enzyme that catalyzes the oxidative deamination of several neutral and basic d-amino acids to their corresponding alpha-keto acids. In most mammalian species studied, high DAO activity is found in the kidney, liver, brain and polymorphonuclear leukocytes, and its main function is to maintain low circulating d-amino acid levels. DAO expression and activity have been associated with acute and chronic kidney diseases and with several pathologies related to N-methyl-d-aspartate (NMDA) receptor hypo/hyper-function; however, its precise role is not completely understood. In the present study we show that DAO activity can be detected in vivo in the rat kidney using hyperpolarized d-[1-C-13]alanine. Following a bolus of hyperpolarized d-alanine, accumulation of pyruvate, lactate and bicarbonate was observed only when DAO activity was not inhibited. The measured lactate-to-d-alanine ratio was comparable to the values measured when the l-enantiomer was injected. Metabolites downstream of DAO were not observed when scanning the liver and brain. The conversion of hyperpolarized d-[1-C-13]alanine to lactate and pyruvate was detected in blood ex vivo, and lactate and bicarbonate were detected on scanning the blood pool in the heart in vivo; however, the bicarbonate-to-d-alanine ratio was significantly lower compared with the kidney. These results demonstrate that the specific metabolism of the two enantiomers of hyperpolarized [1-C-13]alanine in the kidney and in the blood can be distinguished, underscoring the potential of d-[1-C-13]alanine as a probe of d-amino acid metabolism.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (38)
Proteinogenic amino acid
Proteinogenic amino acids are amino acids that are incorporated biosynthetically into proteins during translation. The word "proteinogenic" means "protein creating". Throughout known life, there are 22 genetically encoded (proteinogenic) amino acids, 20 in the standard genetic code and an additional 2 (selenocysteine and pyrrolysine) that can be incorporated by special translation mechanisms.
Glutamic acid
Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can synthesize enough for its use. It is also the most abundant excitatory neurotransmitter in the vertebrate nervous system. It serves as the precursor for the synthesis of the inhibitory gamma-aminobutyric acid (GABA) in GABAergic neurons. Its molecular formula is C5H9NO4.
Amino acid
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the α-amino acids, from which proteins are composed. Only 22 α-amino acids appear in the genetic code of all life. Amino acids can be classified according to the locations of the core structural functional groups, as alpha- (α-), beta- (β-), gamma- (γ-) or delta- (δ-) amino acids; other categories relate to polarity, ionization, and side chain group type (aliphatic, acyclic, aromatic, containing hydroxyl or sulfur, etc.
Show more
Related publications (49)

Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion

Bruno Lemaitre, Zongzhao Zhai

Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory ...
Nature Portfolio2024

NAD(+) Metabolism and Interventions in Premature Renal Aging and Chronic Kidney Disease

Vincenzo Sorrentino

Premature aging causes morphological and functional changes in the kidney, leading to chronic kidney disease (CKD). CKD is a global public health issue with far-reaching consequences, including cardio-vascular complications, increased frailty, shortened li ...
MDPI2023

Variants of the gain domain of adhesion g protein-coupled receptors

Patrick Daniel Barth

The present invention relates to variants of the GAIN domain (G-protein-coupled receptor autoproteolysis-inducing domain) of an adhesion G protein-coupled receptor (ADGRG), such as a GAIN domain variant comprising or consisting of the amino acid sequence o ...
2023
Show more
Related MOOCs (10)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.