Publication

Sensitivity analysis of fractal dimensions of crack maps on concrete and masonry walls

Résumé

Assessing building damage after earthquakes requires a visual inspection of the damage, indicated by maps of the cracking pattern on walls, which could be standardized via automated algorithms. To quantitate this damage, fractal dimensions of these crack maps could be computed by the box-counting algorithm to capture the complexity and irregularity of the pattern. When using the box-counting method, however, the computed fractal dimensions depend on several parameters that can render the measurement ambiguous: the box size interval, the scale factor for the box sizes, the choice of breakpoint location, and the grid disposition and orientation. This paper, therefore, uses a literature search and an evaluation of crack map databases to investigate the sensitivity of the measured fractal dimensions of crack maps on reinforced concrete and unreinforced masonry walls to these four parameters. It then formulates recommendations for the choice of these factors. Because the value of the estimated fractal dimension varied by up to 0.5 depending on the assumed parameters, it is therefore important to use the same set of assumptions when comparing the fractal dimensions of crack patterns.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Dimension fractale
En géométrie fractale, la dimension fractale, D, est une grandeur qui a vocation à traduire la façon qu'a un ensemble fractal de remplir l'espace, à toutes les échelles. Dans le cas des fractales, elle est non entière et supérieure à la dimension topologique. Ce terme est un terme générique qui recouvre plusieurs définitions. Chacune peut donner des résultats différents selon l'ensemble considéré, il est donc essentiel de mentionner la définition utilisée lorsqu'on valorise la dimension fractale d'un ensemble.
Fractale
vignette|Exemple de figure fractale (détail de l'ensemble de Mandelbrot)|alt=Exemple de figure fractale (détail de l'ensemble de Mandelbrot). vignette|Ensemble de Julia en . Une figure fractale est un objet mathématique qui présente une structure similaire à toutes les échelles. C'est un objet géométrique « infiniment morcelé » dont des détails sont observables à une échelle arbitrairement choisie. En zoomant sur une partie de la figure, il est possible de retrouver toute la figure ; on dit alors qu’elle est « auto similaire ».
Ensemble de Mandelbrot
En mathématiques, lensemble de Mandelbrot est une fractale définie comme l'ensemble des points c du plan complexe pour lesquels la suite de nombres complexes définie par récurrence par : est bornée. alt=Représentation de l'ensemble de Mandelbrot|vignette|L'ensemble de Mandelbrot (en noir) L'ensemble de Mandelbrot a été découvert par Gaston Julia et Pierre Fatou avant la Première Guerre mondiale. Sa définition et son nom actuel sont dus à Adrien Douady, en hommage aux représentations qu'en a réalisées Benoît Mandelbrot dans les années 1980.
Afficher plus
Publications associées (55)

Additive and geometric transversality of fractal sets in the integers

Florian Karl Richter

By juxtaposing ideas from fractal geometry and dynamical systems, Furstenberg proposed a series of conjectures in the late 1960's that explore the relationship between digit expansions with respect to multiplicatively independent bases. In this work, we in ...
2024

Fractal Analysis in Pulmonary CT Images of COVID-19-Infected Patients

Maria-Alexandra Paun

In this paper, we propose to quantitatively compare the loss of human lung health under the influence of the illness with COVID-19, based on the fractal-analysis interpretation of the chest-pulmonary CT pictures, in the case of small datasets, which are us ...
MDPI2023

Fractal Analysis of Four Xerogels Based on TEGylated Phenothiazine and Chitosan

Maria-Alexandra Paun

The present article describes novel massive materials (in the solid phase) based on TEGylated phenothiazine and chitosan that possess great capability to recover mercury ions from constituent aqueous solutions. These were produced by chitosan hydrogelation ...
MDPI2023
Afficher plus
MOOCs associés (1)
Sorption and transport in cementitious materials
Learn how to study and improve the durability of cementitious materials.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.