Publication

Additive and geometric transversality of fractal sets in the integers

Florian Karl Richter
2024
Journal paper
Abstract

By juxtaposing ideas from fractal geometry and dynamical systems, Furstenberg proposed a series of conjectures in the late 1960's that explore the relationship between digit expansions with respect to multiplicatively independent bases. In this work, we introduce and study - in the discrete context of the integers - analogs of some of the notions and results surrounding Furstenberg's work. In particular, we define a new class of fractal sets of integers that parallels the notion of xr×r\times r-invariant sets on the 1-torus and investigate the additive and geometric independence between two such fractal sets when they are structured with respect to multiplicatively independent bases. Our main results in this direction parallel the works of Furstenberg, Hochman-Shmerkin, Shmerkin, Wu, and Lindenstrauss-Meiri-Peres and include: a classification of all subsets of the positive integers that are simultaneously xr×r\times r- and xs×s\times s-invariant; integer analogs of two of Furstenberg's transversality conjectures pertaining to the dimensions of the intersection A boolean AND BABA\cap B and the sumset A+BA+BA+B of xr×r\times r- and xs×s\times s-invariant sets AAA and BBB when rrr and sss are multiplicatively independent; and a description of the dimension of iterated sumsets A+A+& ctdot;+AA+A++AA+A+\cdots +A for any xr×r\times r-invariant set AAA. We achieve these results by combining ideas from fractal geometry and ergodic theory to build a bridge between the continuous and discrete regimes. For the transversality results, we rely heavily on quantitative bounds on the LqLqLq-dimensions of projections of restricted digit Cantor measures obtained recently by Shmerkin. We end by outlining a number of open questions and directions regarding fractal subsets of the integers.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (50)
Fractal
In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set. This exhibition of similar patterns at increasingly smaller scales is called self-similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, the shape is called affine self-similar.
Fractal dimension
In mathematics, a fractal dimension is a term invoked in the science of geometry to provide a rational statistical index of complexity detail in a pattern. A fractal pattern changes with the scale at which it is measured. It is also a measure of the space-filling capacity of a pattern, and it tells how a fractal scales differently, in a fractal (non-integer) dimension. The main idea of "fractured" dimensions has a long history in mathematics, but the term itself was brought to the fore by Benoit Mandelbrot based on his 1967 paper on self-similarity in which he discussed fractional dimensions.
Fractal curve
A fractal curve is, loosely, a mathematical curve whose shape retains the same general pattern of irregularity, regardless of how high it is magnified, that is, its graph takes the form of a fractal. In general, fractal curves are nowhere rectifiable curves — that is, they do not have finite length — and every subarc longer than a single point has infinite length. A famous example is the boundary of the Mandelbrot set. Fractal curves and fractal patterns are widespread, in nature, found in such places as broccoli, snowflakes, feet of geckos, frost crystals, and lightning bolts.
Show more
Related publications (68)

Moments of the number of points in a bounded set for number field lattices

Maryna Viazovska, Nihar Prakash Gargava, Vlad Serban

We examine the moments of the number of lattice points in a fixed ball of volume VV for lattices in Euclidean space which are modules over the ring of integers of a number field KK. In particular, denoting by ωKω_K the number of roots of unity in KK, we ...
arXiv2023

Fractal Analysis of Four Xerogels Based on TEGylated Phenothiazine and Chitosan

Maria-Alexandra Paun

The present article describes novel massive materials (in the solid phase) based on TEGylated phenothiazine and chitosan that possess great capability to recover mercury ions from constituent aqueous solutions. These were produced by chitosan hydrogelation ...
MDPI2023

Fifth-generation fractal antenna design based on the Koch Snowflake geometry. A fractal theory application

Maria-Alexandra Paun

The projection of fifth-generation (5G) fractal antennas and their advantageous geometry are examined. The fact that fractal-shaped antennas based on Koch Snowflake geometry are suitable for higher frequencies was shown above all. By the instrumentality of ...
WILEY2023
Show more
Related MOOCs (25)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.