Publication

Electromagnetic fields in a time-varying medium: Exceptional points and operator symmetries

Abstract

In this paper, we study the interactions of electromagnetic waves with a non-dispersive dynamic medium that is temporally dependent. Electromagnetic fields under material time-modulation conserve their momentum but not their energy. We assume a time-variation of the permittivity, permeability and conductivity and derive the appropriate time-domain solutions based on the causality state at a past observation time. We formulate a time-transitioning state matrix and connect the unusual energy transitions of electromagnetic fields in time-varying media with the exceptional point theory. This state-matrix approach allows us to analyze further the electromagnetic waves in terms of parity and time-reversal symmetries and signify parity-time symmetric wave-states without the presence of a spatially symmetric distribution of gain and loss, or any inhomogeneities and material periodicity. This paper provides a useful arsenal to study electromagnetic wave phenomena under time-varying media and points out novel physical insights connecting the resulting energy transitions and electromagnetic modes with exceptional point physics and operator symmetries.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (35)
Electromagnetic radiation
In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. Types of EMR include radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays, all of which are part of the electromagnetic spectrum. Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields.
Electromagnetism
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electrostatics and magnetism, two distinct but closely intertwined phenomena.
Electromagnetic field
An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by moving electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical counterpart to the quantized electromagnetic field tensor in quantum electrodynamics (a quantum field theory). The electromagnetic field propagates at the speed of light (in fact, this field can be identified as light) and interacts with charges and currents.
Show more
Related publications (54)

Infrastructures of Solidarity, Infrastructures of Totalitarism

Alfredo Thiermann

Between 11 September 1973 and 11 March 1990, the silenced voices of many were dissolved into electromagnetic waves so they could be transmitted and heard in Chile. For sixteen years, the broadcasting house of the German Democratic Republic (GDR) – the Funk ...
2023

A Homogenization Model for Soft Magnetic Composites Considering the Effect of Mechanical Stress

Xiaotao Ren

Soft Magnetic Composites (SMC) are an alternative to laminated steels for the design of smaller and lighter electromagnetic devices.Such electromagnetic devices might be subjected to significant mechanical stresses that can alter their electromagnetic prop ...
2022

Recent advances in fiber optic sensors for respiratory monitoring

Jiangtao Zhou, Yiping Wang, Dan Liu

There is a growing need to measure respiratory rate (RR) in a variety of applications, including in clinical and occupational settings, as well as during physical exercises. Fiber optic sensors (FOSs) is an attractive solution for wearable RR monitoring be ...
ELSEVIER SCIENCE INC2022
Show more
Related MOOCs (21)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.