Publication

WatchNet plus plus : efficient and accurate depth-based network for detecting people attacks and intrusion

Abstract

We present an efficient and accurate people detection approach based on deep learning to detect people attacks and intrusion in video surveillance scenarios Unlike other approaches using background segmentation and pre-processing techniques, which are not able to distinguish people from other elements in the scene, we propose WatchNet++ that is a depth-based and sequential network that localizes people in top-view depth images by predicting human body joints and pairwise connections (links) such as head and shoulders. WatchNet++ comprises a set of prediction stages and up-sampling operations that progressively refine the predictions of joints and links, leading to more accurate localization results. In order to train the network with varied and abundant data, we also present a large synthetic dataset of depth images with human models that is used to pre-train the network model. Subsequently, domain adaptation to real data is done via fine-tuning using a real dataset of depth images with people performing attacks and intrusion. An extensive evaluation of the proposed approach is conducted for the detection of attacks in airlocks and the counting of people in indoors and outdoors, showing high detection scores and efficiency. The network runs at 10 and 28 FPS using CPU and GPU, respectively.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Deep learning
Deep learning is part of a broader family of machine learning methods, which is based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.
Artificial neural network
Artificial neural networks (ANNs, also shortened to neural networks (NNs) or neural nets) are a branch of machine learning models that are built using principles of neuronal organization discovered by connectionism in the biological neural networks constituting animal brains. An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons.
Computer network
A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies. The nodes of a computer network can include personal computers, servers, networking hardware, or other specialized or general-purpose hosts.
Show more
Related publications (50)

Data for Paper "Scalable Semantic 3D Mapping of Coral Reefs with Deep Learning"

Anders Meibom, Devis Tuia, Guilhem Maurice Louis Banc-Prandi, Jonathan Paul Sauder

Example Data for DeepReefMap This dataset contains input videos in MP4 format taken with GoPro Hero 10 Cameras in Reefs in the Red Sea to demonstrate the DeepReefMap tool, which is described in the paper "Scalable Semantic 3D Mapping of Coral Reefs with De ...
EPFL Infoscience2024

Fundamental Limits in Statistical Learning Problems: Block Models and Neural Networks

Elisabetta Cornacchia

This thesis focuses on two selected learning problems: 1) statistical inference on graphs models, and, 2) gradient descent on neural networks, with the common objective of defining and analysing the measures that characterize the fundamental limits.In the ...
EPFL2023

Investigating cognitive ability using action-based models of structural brain networks

Enrico Amico

Recent developments in network neuroscience have highlighted the importance of developing techniques for analysing and modelling brain networks. A particularly powerful approach for studying complex neural systems is to formulate generative models that use ...
OXFORD UNIV PRESS2022
Show more
Related MOOCs (4)
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Show more