Un réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques.
Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien. Ils sont placés d'une part dans la famille des applications statistiques, qu'ils enrichissent avec un ensemble de paradigmes permettant de créer des classifications rapides (réseaux de Kohonen en particulier), et d'autre part dans la famille des méthodes de l'intelligence artificielle auxquelles ils fournissent un mécanisme perceptif indépendant des idées propres de l'implémenteur, et des informations d'entrée au raisonnement logique formel (voir Apprentissage profond).
En modélisation des circuits biologiques, ils permettent de tester quelques hypothèses fonctionnelles issues de la neurophysiologie, ou encore les conséquences de ces hypothèses pour les comparer au réel.
Les réseaux neuronaux sont construits sur un paradigme biologique, celui du neurone formel (comme les algorithmes génétiques le sont sur la sélection naturelle). Ce type de métaphore biologique est devenu courant avec les idées de la cybernétique et biocybernétique. Selon la formule de Yann Le Cun, celui-ci ne prétend pas davantage décrire le cerveau qu'. En particulier, le rôle des cellules gliales n'est pas simulé.
Les neurologues Warren McCulloch et Walter Pitts publièrent dès la fin des années 1950 les premiers travaux sur les réseaux de neurones, avec un article fondateur : What the frog’s eye tells the frog’s brain (Ce que l'œil d'une grenouille dit à son cerveau). Ils constituèrent ensuite un modèle simplifié de neurone biologique communément appelé neurone formel. Ils montrèrent que des réseaux de neurones formels simples peuvent théoriquement réaliser des fonctions logiques, arithmétiques et symboliques complexes.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
L'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Marvin Lee Minsky, PhD, né le à New York et mort le à Boston, est un scientifique américain. Il a travaillé dans le domaine des sciences cognitives et de l'intelligence artificielle. Il est également cofondateur, avec l'informaticien John McCarthy du Groupe d'intelligence artificielle du Massachusetts Institute of Technology (MIT) et auteur de nombreuses publications aussi bien en intelligence artificielle qu'en philosophie comme La Société de l'esprit (1986).
L'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
Explore la prévision des trajectoires dans les véhicules autonomes, en mettant l'accent sur les modèles d'apprentissage profond pour prédire les trajectoires humaines dans les scénarios de transport socialement conscients.
Explore l'apprentissage autosupervisé pour les véhicules autonomes, en dérivant des étiquettes de données elles-mêmes et en discutant de ses applications et de ses défis.
Explore l'analyse documentaire, la modélisation thématique et les modèles génériques pour la production de données dans l'apprentissage automatique.
, , ,
Here we provide the neural data, activation and predictions for the best models and result dataframes of our article "Task-driven neural network models predict neural dynamics of proprioception". It contains the behavioral and neural experimental data (cu ...
EPFL Infoscience2024
, ,
We present a finite elements-neural network approach for the numerical approximation of parametric partial differential equations. The algorithm generates training data from finite element simulations, and uses a data -driven (supervised) feedforward neura ...
Lausanne2024
, ,
Despite the widespread empirical success of ResNet, the generalization properties of deep ResNet are rarely explored beyond the lazy training regime. In this work, we investigate scaled ResNet in the limit of infinitely deep and wide neural networks, of wh ...