Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Perovskite solar cells (PSCs) have attracted unprecedented attention due to their rapidly rising photoelectric conversion efficiency (PCE). In order to further improve the PCE of PSCs, new possible optimization path needs to be found. Here, quasi-heteroface PSCs (QHF-PSCs) is designed by a double-layer perovskite film. Such brand new PSCs have good carrier separation capabilities, effectively suppress the nonradiative recombination of the PSCs, and thus greatly improve the open-circuit voltage and PCE. The root cause of the performance improvement is the benefit from the additional built-in electric field, which is confirmed by measuring the external quantum efficiency under applied electric field and Kelvin probe force microscope. Meanwhile, an intermediate band gap perovskite layer can be obtained simply by combining a wide band gap perovskite layer with a narrow band gap perovskite layer. Tunability of the band gap is obtained by varying the film thicknesses of the narrow and wide band gap layers. This phenomenon is quite different from traditional inorganic solar cells, whose band gap is determined only by the narrowest band gap layer. It is believed that these QHF-PSCs will be an effective strategy to further enhance PCE in PSCs and provide basis to further understand and develop the perovskite materials platform.
Michael Saliba, Antonio Abate, Feng Yang, Guixiang Li, Meng Li, Xingyu Gao, Rui Zhu, Zhe Li
Mohammad Khaja Nazeeruddin, Peng Gao, Ye Yang, Chaohui Li
, , , , ,