Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We focus on the generalized-interpolation problem. There, one reconstructs continuous-domain signals that honor discrete data constraints. This problem is infinite-dimensional and ill-posed. We make it well-posed by imposing that the solution balances data fidelity and some L-p-norm regularization. More specifically, we consider p >= 1 and the multi-order derivative regularization operator L = D-N0. We reformulate the regularized problem exactly as a finite-dimensional one by restricting the search space to a suitable space of polynomial splines with knots on a uniform grid. Our splines are represented in a B-spline basis, which results in a well-conditioned discretization. For a sufficiently fine grid, our search space contains functions that are arbitrarily close to the solution of the underlying problem where our constraint that the solution must live in a spline space would have been lifted. This remarkable property is due to the approximation power of splines. We use the alternating-direction method of multipliers along with a multiresolution strategy to compute our solution. We present numerical results for spatial and Fourier interpolation. Through our experiments, we investigate features induced by the L-p-norm regularization, namely, sparsity, regularity, and oscillatory behavior.
Martin Vetterli, Paul Hurley, Eric Bezzam, Sepand Kashani, Matthieu Martin Jean-André Simeoni
Joao Pedro Gonçalves Ramos, Martin Peter Stoller