Concept# Interpolation

Summary

In the mathematical field of numerical analysis, interpolation is a type of estimation, a method of constructing (finding) new data points based on the range of a discrete set of known data points.
In engineering and science, one often has a number of data points, obtained by sampling or experimentation, which represent the values of a function for a limited number of values of the independent variable. It is often required to interpolate; that is, estimate the value of that function for an intermediate value of the independent variable.
A closely related problem is the approximation of a complicated function by a simple function. Suppose the formula for some given function is known, but too complicated to evaluate efficiently. A few data points from the original function can be interpolated to produce a simpler function which is still fairly close to the original. The resulting gain in simplicity may outweigh the loss from interpolation error and give better performance in calculat

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people (26)

Related units

Loading

Related concepts

Loading

Related courses (64)

MATH-251(c): Numerical analysis

Le cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, approximation de fonctions, intégration et dérivation, équations différentielles.

FIN-472: Computational finance

Participants of this course will master computational techniques frequently used in mathematical finance applications. Emphasis will be put on the implementation and practical aspects.

MATH-251(d): Numerical analysis

This course offers an introduction to numerical methods for the solution of mathematical problems as: solution of systems of linear and non-linear equations, functions approximation, integration and differentiation and solution of differential equations.

Related lectures

Loading

Related units (21)

Related concepts (43)

Numerical analysis

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathema

Linear interpolation

In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points.
Linear interpolat

Integral

In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the

Related publications (100)

Loading

Loading

Loading

Options are some of the most traded financial instruments and computing their price is a central task in financial mathematics and in practice. Consequently, the development of numerical algorithms for pricing options is an active field of research. In general, evaluating the price of a specific option relies on the properties of the stochastic model used for the underlying asset price. In this thesis we develop efficient and accurate numerical methods for option pricing in a specific class of models: polynomial models. They are a versatile tool for financial modeling and have useful properties that can be exploited for option pricing.
Significant challenges arise when developing option pricing techniques. For instance, the underlying model might have a high-dimensional parameter space. Furthermore, treating multi-asset options yields high-dimensional pricing problems. Therefore, the pricing method should be able to handle high dimensionality. Another important aspect is the efficiency of the algorithm: in real-world applications, option prices need to be delivered within short periods of time, making the algorithmic complexity a potential bottleneck. In this thesis, we address these challenges by developing option pricing techniques that are able to handle low and high-dimensional problems, and we propose complexity reduction techniques.
The thesis consists of four parts:
First, we present a methodology for European and American option pricing. The method uses the moments of the underlying price process to produce monotone sequences of lower and upper bounds of the option price. The bounds are obtained by solving a sequence of polynomial optimization problems. As the order of the moments increases, the bounds become sharper and eventually converge to the exact price under appropriate assumptions.
Second, we develop a fast algorithm for the incremental computation of nested block triangular matrix exponentials. This algorithm allows for an efficient incremental computation of the moment sequence of polynomial jump-diffusions. In other words, moments of order 0, 1, 2, 3... are computed sequentially until a dynamically evaluated criterion tells us to stop. The algorithm is based on the scaling and squaring technique and reduces the complexity of the pricing algorithms that require such an incremental moment computation.
Third, we develop a complexity reduction technique for high-dimensional option pricing. To this end, we first consider the option price as a function of model and payoff parameters. Then, the tensorized Chebyshev interpolation is used on the parameter space to increase the efficiency in computing option prices, while maintaining the required accuracy. The high dimensionality of the problem is treated by expressing the tensorized interpolation in the tensor train format and by deriving an efficient way, which is based on tensor completion, to approximate the interpolation coefficients.
Lastly, we propose a methodology for pricing single and multi-asset European options. The approach is a combination of Monte Carlo simulation and function approximation. We address the memory limitations that arise when treating very high-dimensional applications by combining the method with optimal sampling strategies and using a randomized algorithm to reduce the storage complexity of the approach.
The obtained numerical results show the effectiveness of the algorithms developed in this thesis.

Quentin Christian Becker, Mike Yan Michelis

The underlying geometrical structure of the latent space in deep generative models is in most cases not Euclidean, which may lead to biases when comparing interpolation capabilities of two models. Smoothness and plausibility of linear interpolations in latent space are associated with the quality of the underlying generative model. In this paper, we show that not all such interpolations are comparable as they can deviate arbitrarily from the shortest interpolation curve given by the geodesic. This deviation is revealed by computing curve lengths with the pull-back metric of the generative model, finding shorter curves than the straight line between endpoints, and measuring a non-zero relative length improvement on this straight line. This leads to a strategy to compare linear interpolations across two generative models. We also show the effect and importance of choosing an appropriate output space for computing shorter curves. For this computation we derive an extension of the pull-back metric.

2021Related lectures (157)