Publication

Reading Out Olfactory Receptors: Feedforward Circuits Detect Odors in Mixtures without Demixing

Abstract

The olfactory system, like other sensory systems, can detect specific stimuli of interest amidst complex, varying backgrounds. To gain insight into the neural mechanisms underlying this ability, we imaged responses of mouse olfactory bulb glomeruli to mixtures. We used this data to build a model of mixture responses that incorporated nonlinear interactions and trial-to-trial variability and explored potential decoding mechanisms that can mimic mouse performance when given glomerular responses as input. We find that a linear decoder with sparse weights could match mouse performance using just a small subset of the glomeruli (∼15). However, when such a decoder is trained only with single odors, it generalizes poorly to mixture stimuli due to nonlinear mixture responses. We show that mice similarly fail to generalize, suggesting that they learn this segregation task discriminatively by adjusting task-specific decision boundaries without taking advantage of a demixed representation of odors.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.