Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The native-like structures of protonated glycine and peptide Gly3H+ were elucidated using cold ion IR spectroscopy of these biomolecules hydrated by a controlled number of water molecules. The complexes were generated directly from an aqueous solution using gentle electrospray ionization. Already with a single retained water molecule, GlyH+ exhibits the native-like structure characterized by a lack of intramolecular hydrogen bonds. We use our spectra to calibrate the available data for the same complexes, which are produced by cryogenic condensation of water onto the gas-phase glycine. In some conformers of these complexes, GlyH+ adopts the native-like structure, while in the others, it remains “kinetically” trapped in the intrinsic state. Upon condensation of 4–5 water molecules, the embedded amino acid fully adopts its native-like structure. Similarly, condensation of one water molecule onto the tripeptide is insufficient to fully eliminate its kinetically trapped intrinsic states.
, , ,
Richard Gaal, Livia Eleonora Bove Kado, Umbertoluca Ranieri