Publication

Interaction of Confined Polaritons in Microcavity Structures

Morteza Navadeh Toupchi
2021
EPFL thesis
Abstract

A polariton is a quasiparticle formed from the coupling of a confined photon in a cavity to electronic excitation, like exciton in a semiconductor. This dissertation reports on series of experiments in confined polariton interaction by design, fabrication, and characterization of semiconductor microcavity structures operating in strong or weak coupling regime.

In the first part of the thesis, we mainly concentrate on the optical study of the 2D microcavity sample, including spin-dependent lower-upper polariton cross interactions by pump-probe spectroscopy technique, supported by theoretical analyses and numerical simulations based on Gross-Pitaevskii equations. In particular, we present a scattering resonance behavior via an exciton molecule (biexciton) when polaritons from both the upper and lower branches with anti-parallel spins are involved through a polaritonic cross Feshbach resonance. This demonstration will permit the control of the polariton interbranch scattering.

The second part of the thesis is dedicated to the design and fabrication of the potentials where the photonic part of polaritons is confined laterally by adjusting the thickness of the cavity layer locally in so-called mesa structures. By engineering a periodic lattice of mesas on a two-dimensional microcavity, it is possible to couple confined polariton modes of nearby mesas to establish an optical lattice analogous to the crystalline semiconductors’ electronic band structures. We especially demonstrate the localization of light with a lasing mode at the edge of the Brillouin zone in a two-dimensional triangular lattice. We produce a self-trapping of light by optically inducing a local breaking of the strong-coupling regime of excitons to photons. In the weak coupling regime, we control the confined modes by the shape of the generated defect. We also reveal a controllable localization degree and experimental signature of the Anderson localization in microcavity polaritons by inducing positional disorder in the triangular lattice.

The last part is devoted to the fabrication of sub-micron size mesas to enhance polariton interaction by confining them tightly and discuss the quantum correlation of polaritons by a Hanbury Brown and Twiss (HBT) setting toward polariton blockade.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Surface plasmon polariton
Surface plasmon polaritons (SPPs) are electromagnetic waves that travel along a metal–dielectric or metal–air interface, practically in the infrared or visible-frequency. The term "surface plasmon polariton" explains that the wave involves both charge motion in the metal ("surface plasmon") and electromagnetic waves in the air or dielectric ("polariton"). They are a type of surface wave, guided along the interface in much the same way that light can be guided by an optical fiber.
Polariton
In physics, polaritons pəˈlærᵻtɒnz,_poʊ- are quasiparticles resulting from strong coupling of electromagnetic waves with an electric or magnetic dipole-carrying excitation. They are an expression of the common quantum phenomenon known as level repulsion, also known as the avoided crossing principle. Polaritons describe the crossing of the dispersion of light with any interacting resonance. To this extent polaritons can also be thought of as the new normal modes of a given material or structure arising from the strong coupling of the bare modes, which are the photon and the dipolar oscillation.
Semiconductor
A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. Its conducting properties may be altered in useful ways by introducing impurities ("doping") into the crystal structure. When two differently doped regions exist in the same crystal, a semiconductor junction is created.
Show more
Related publications (118)

Exciton migration in two-dimensional materials

Excitons play an essential role in the optical response of two-dimensional materials. These are bound states showing up in the band gaps of many-body systems and are conceived as quasiparticles formed by an electron and a hole. By performing real-time simu ...
Nature Portfolio2024

Giant two-photon absorption of anatase TiO2 in Au/TiO2 core-shell nanoparticles

Majed Chergui, Malte Oppermann, Lijie Wang

We report on deep-to-near-UV transient absorption spectra of core-shell Au/SiO2 and Au/TiO2 nanoparticles (NPs) excited at the surface plasmon resonance of the Au core, and of UV-excited bare anatase TiO2 NPs. The bleaching of the first excitonic transitio ...
CHINESE LASER PRESS2023

Polariton lasing in AlGaN microring with GaN/AlGaN quantum wells

Nicolas Grandjean, Jean-François Carlin, Raphaël Butté

Microcavity polaritons are strongly interacting hybrid light-matter quasiparticles, which are promising for the development of novel light sources and active photonic devices. Here, we report polariton lasing in the UV spectral range in microring resonator ...
AIP Publishing2023
Show more
Related MOOCs (5)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.