Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We consider the dynamical properties of a gapped quantum spin system coupled to the electric field of a laser, which drives the resonant excitation of specific phonon modes that modulate the magnetic interactions. We deduce the quantum master equations governing the time-evolution of both the lattice and spin sectors, by developing a Lindblad formalism with bath operators providing an explicit description of their respective phonon-mediated damping terms. We investigate the nonequilibrium steady states (NESS) of the spin system established by a continuous driving, delineating parameter regimes in driving frequency, damping, and spin-phonon coupling for the establishment of physically meaningful NESS and their related nontrivial properties. Focusing on the regime of generic weak spin-phonon coupling, we characterize the NESS by their frequency and wave-vector content, explore their transient and relaxation behavior, and discuss the energy flow, the system temperature, and the critical role of the type of bath adopted. Our study lays a foundation for the quantitative modeling of experiments currently being designed to control coherent many-body spin states in quantum magnetic materials.
Bruce Normand, Ying Chen, Sheng Xu, Shuo Li, Xiaoyu Xu, Zeyu Wang, Weiqiang Yu