Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Phase transitions in condensed matter are a source of exotic emergent properties. We study the fully frustrated bilayer Heisenberg antiferromagnet to demonstrate that an applied magnetic field creates a previously unknown emergent criticality. The quantum phase diagram contains four states with distinctly different symmetries, all but one pair separated by first-order transitions. We show by quantum Monte Carlo simulations that the thermal phase diagram is dominated by a wall of discontinuities extending between the dimer-triplet phases and the singlet-containing phases. This wall is terminated at finite temperatures by a critical line, which becomes multicritical where the Berezinskii-Kosterlitz-Thouless (BKT) transition of the dimer-triplet antiferromagnet and the thermal Ising transition of the singlet-triplet crystal phase also terminate. The combination of merging symmetries leads to a 4-state Potts universality not contained in the microscopic Hamiltonian, which we interpret within the Ashkin-Teller model. Our results represent a systematic step in understanding emergent phenomena in quantum magnetic materials, including the "Shastry-Sutherland compound" SrCu2(BO3)2.
Frédéric Mila, Loïc Jean Pierre Herviou