Publication

Molecular Origin of the Asymmetric Photoluminescence Spectra of CsPbBr3 at Low Temperature

Abstract

CsPbBr3 has received wide attention due to its superior emission yield and better thermal stability compared to other organic-inorganic lead halide perovskites. In this study, through an interplay of theory and experiments, we investigate the molecular origin of the asymmetric low-temperature photoluminescence spectra of CsPbBr3. We conclude that the origin of this phenomenon lies in a local dipole moment (and the induced Stark effect) due to the preferential localization of Cs+ in either of two off-center positions of the empty space between the surrounding PbBr6 octahedra. With increasing temperature, Cs+ ions are gradually occupying positions closer and closer to the center of the cavities. The gradual loss of ordering in the Cs+ position with increasing temperature is the driving force for the formation of tetragonal-like arrangements within the orthorhombic lattice.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.