In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces.
A subset of a topological space is a if it is a connected space when viewed as a subspace of .
Some related but stronger conditions are path connected, simply connected, and -connected. Another related notion is locally connected, which neither implies nor follows from connectedness.
A topological space is said to be if it is the union of two disjoint non-empty open sets. Otherwise, is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice.
For a topological space the following conditions are equivalent:
is connected, that is, it cannot be divided into two disjoint non-empty open sets.
The only subsets of which are both open and closed (clopen sets) are and the empty set.
The only subsets of with empty boundary are and the empty set.
cannot be written as the union of two non-empty separated sets (sets for which each is disjoint from the other's closure).
All continuous functions from to are constant, where is the two-point space endowed with the discrete topology.
Historically this modern formulation of the notion of connectedness (in terms of no partition of into two separated sets) first appeared (independently) with N.J. Lennes, Frigyes Riesz, and Felix Hausdorff at the beginning of the 20th century. See for details.
Given some point in a topological space the union of any collection of connected subsets such that each contains will once again be a connected subset.
The connected component of a point in is the union of all connected subsets of that contain it is the unique largest (with respect to ) connected subset of that contains
The maximal connected subsets (ordered by inclusion ) of a non-empty topological space are called the connected components of the space.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A topological space is a space endowed with a notion of nearness. A metric space is an example of a topological space, where the concept of nearness is measured by a distance function. Within this abs
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness.
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are isolated from each other in a certain sense. The discrete topology is the finest topology that can be given on a set. Every subset is open in the discrete topology so that in particular, every singleton subset is an open set in the discrete topology.
Point clouds allow for the representation of 3D multimedia content as a set of disconnected points in space. Their inher- ent irregular geometric nature poses a challenge to efficient compression, a critical operation for both storage and trans- mission. T ...
Let h be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair (X,H), consisting of a connected space X and an hperfect ...
We prove that the set of-y-thick points of a planar Gaussian free field (GFF) with Dirichlet boundary conditions is a.s. totally disconnected for all-y =6 0. Our proof relies on the coupling between a GFF and the nested CLE4. In particular, we show that th ...