Publication

Simulating Infiltration as a Sequence of Pinning and De-pinning Processes

Abstract

The infiltration of a non-wetting liquid, such as molten metal, into a porous solid, such as a ceramic preform, is influenced by the wetting angle of the liquid on the solid. The link between local wetting and the minimum pressure required for initiation of infiltration or the pressure required for full preform infiltration can deviate strongly from what one would expect on the basis of elementary thermodynamic considerations or simple geometrical models. In this work, we explain the trends observed in experimental studies of pressure infiltration of molten metal into ceramic preforms by means of a percolation model, in which the pores themselves are given a simple geometric shape. This gives a simple yet rich and realistic treatment of the infiltration process. Specifically, the pop-through pressure necessary to traverse a throat between two neighboring circular (2D) or spherical (3D) pores can easily be calculated and incorporated in a 3D network model of many pores produced by generating a packing of slightly overlapping circles or spheres. The resulting pore structure defines a bond percolation network that agrees overall both with predictions of percolation theory and observations from experiment, and which can be extended to address a range of other aspects of multi-phase flow through porous media. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Percolation theory
In statistical physics and mathematics, percolation theory describes the behavior of a network when nodes or links are added. This is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnected clusters merge into significantly larger connected, so-called spanning clusters. The applications of percolation theory to materials science and in many other disciplines are discussed here and in the articles Network theory and Percolation (cognitive psychology).
Percolation threshold
The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making, percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them.
Percolation
In physics, chemistry, and materials science, percolation () refers to the movement and filtering of fluids through porous materials. It is described by Darcy's law. Broader applications have since been developed that cover connectivity of many systems modeled as lattices or graphs, analogous to connectivity of lattice components in the filtration problem that modulates capacity for percolation.
Show more
Related publications (49)

Stick-slip-to-stick transition of liquid oscillations in a U-shaped tube

François Gallaire, Alessandro Bongarzone

The nonlinear decay of oscillations of a liquid column in a U-shaped tube is investigated within the theoretical framework of the projection method formalized by Bongarzone et al. [Chaos 31, 123124 (2021)]. Starting from the full hydrodynamic system supple ...
Amer Physical Soc2024

THE PHASE TRANSITION FOR PLANAR GAUSSIAN PERCOLATION MODELS WITHOUT FKG

Alejandro Rivera

We develop techniques to study the phase transition for planar Gaussian percolation models that are not (necessarily) positively correlated. These models lack the property of positive associations (also known as the 'FKG inequality'), and hence many classi ...
Cleveland2023

Percolation and phase behavior in cellulose nanocrystal suspensions from nonlinear rheological analysis

Tiffany Abitbol

We examine the influence of surface charge on the percolation, gel-point and phase behavior of cellulose nanocrystal (CNC) suspensions in relation to their nonlinear rheological material response. Desulfation decreases CNC surface charge density which lead ...
ELSEVIER SCI LTD2023
Show more
Related MOOCs (1)
Sorption and transport in cementitious materials
Learn how to study and improve the durability of cementitious materials.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.