Publication

Serial Lightweight Implementation Techniques for Block Ciphers

Muhammed Fatih Balli
2021
EPFL thesis
Abstract

Most of the cryptographic protocols that we use frequently on the internet are designed in a fashion that they are not necessarily suitable to run in constrained environments. Applications that run on limited-battery, with low computational power, or area constraints, therefore requires the new designs as well as improved implementations of cryptographic primitives, hence emerges the field lightweight cryptography.

In this thesis, we contribute to this effort in few separate directions, in particular regarding block ciphers and block-cipher-based authentication scheme implementations as application-specific integrated circuits (ASIC).

First, we look at optimizations that can be achieved at higher level. In particular, we show that the complete AES family (with varying key sizes 128, 192 and 256) can be realized as combined lightweight circuit, in a manner that shares the storage elements in order to save up silicon area.

Secondly, we contribute in the evaluation of a new design paradigm of fork cipher. We look at how much lightweight efficiency can be gained with this new AEAD design approach, by implementing ForkAES both in round-based and byte-serial implementations. Our comparison with respect to silicon area and energy consumption provides useful insights into AEAD design process.

Lastly, in the large portion of this thesis, we look at the permutation layer of block ciphers from the perspective of serial-circuits. Based on the permutation theory, we establish a method to divide the permutation layers of AES, SKINNY, GIFT and PRESENT into simpler swap operations. Given that these swap operations are cheap in ASIC, we further provide architectural optimization techniques for the implementation of these block ciphers, and we provide the smallest 1-bit implementations of them.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (42)
Block cipher
In cryptography, a block cipher is a deterministic algorithm that operates on fixed-length groups of bits, called blocks. Block ciphers are the elementary building blocks of many cryptographic protocols. They are ubiquitous in the storage and exchange of data, where such data is secured and authenticated via encryption. A block cipher uses blocks as an unvarying transformation. Even a secure block cipher is suitable for the encryption of only a single block of data at a time, using a fixed key.
Cryptography
Cryptography, or cryptology (from κρυπτός "hidden, secret"; and γράφειν graphein, "to write", or -λογία -logia, "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others.
Cryptographic protocol
A cryptographic protocol is an abstract or concrete protocol that performs a security-related function and applies cryptographic methods, often as sequences of cryptographic primitives. A protocol describes how the algorithms should be used and includes details about data structures and representations, at which point it can be used to implement multiple, interoperable versions of a program. Cryptographic protocols are widely used for secure application-level data transport.
Show more
Related publications (76)

Green Cryptography and Other Optimisations

Andrea Felice Caforio

The spectral decomposition of cryptography into its life-giving components yields an interlaced network oftangential and orthogonal disciplines that are nonetheless invariably grounded by the same denominator: theirimplementation on commodity computing pla ...
EPFL2023

PAE: Towards More Efficient and BBB-Secure AE from a Single Public Permutation

Ritam Bhaumik

Four recent trends have emerged in the evolution of authenticated encryption schemes: (1) Regarding simplicity, the adoption of public permutations as primitives allows for sparing a key schedule and the need for storing round keys; (2) using the sums of p ...
Springer2023

BBB security for 5-round even-Mansour-based key-alternating Feistel ciphers

Ritam Bhaumik

In this paper, we study the security of the Key-Alternating Feistel (KAF) ciphers, a class of key alternating ciphers with the Feistel structure, where each round of the cipher is instantiated with n-bit public round permutation Pi\documentclass[12pt]{mini ...
SPRINGER2023
Show more
Related MOOCs (1)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).