Publication

Mechanistic Study on Thermally Induced Lattice Stiffening of ZIF-8

Abstract

The flexibility of the ZIF-8 aperture, which inhibits a molecular cutoff of 3.4 angstrom, can be reduced by rapid heat treatment to obtain CO2-selective membranes. However, the early stages of the structural, morphological, and chemical changes responsible for the lattice rigidification remain elusive. Herein, using ex situ and in situ experiments, we determine that a small shrinkage of the unit-cell parameter, similar to 0.2%, is mainly responsible for this transformation. Systematic gas permeation studies show that one needs to achieve this shrinkage without a disproportionately large shrinkage in the grain size of the polycrystalline film to avoid the formation of cracks. We show that this condition is uniquely achieved in a short time by exposure of ZIF-8 to a mildly humid environment where lattice parameter shrinkage is accelerated by the incorporation of linker vacancy defects, while the shrinkage in grain size is limited. The water-vapor-led incorporation of linker vacancy defects takes place with an energy barrier of 123 kJ mol(-1), much higher than that for the thermal degradation of ZIF-8,

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (28)
Heat treating
Heat treating (or heat treatment) is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are also used in the manufacture of many other materials, such as glass. Heat treatment involves the use of heating or chilling, normally to extreme temperatures, to achieve the desired result such as hardening or softening of a material.
Heat illness
Heat illness is a spectrum of disorders due to increased body temperature. It can be caused by either environmental conditions or by exertion. It includes minor conditions such as heat cramps, heat syncope, and heat exhaustion as well as the more severe condition known as heat stroke. It can affect any or all anatomical systems. Heat illnesses include: Heat stroke, heat exhaustion, heat syncope, heat edema, heat cramps, heat rash, heat tetany.
Creep (deformation)
In materials science, creep (sometimes called cold flow) is the tendency of a solid material to undergo slow deformation while subject to persistent mechanical stresses. It can occur as a result of long-term exposure to high levels of stress that are still below the yield strength of the material. Creep is more severe in materials that are subjected to heat for long periods and generally increase as they near their melting point. The rate of deformation is a function of the material's properties, exposure time, exposure temperature and the applied structural load.
Show more
Related publications (32)

Three-dimensional in situ imaging of single-grain growth in polycrystalline In2O3:Zr films

Quentin Thomas Jeangros, Monica Morales Masis, Michael Elias Stückelberger

Understanding grain morphology and kinetics of solid-phase crystallization is important for controlling the functional properties of polycrystalline materials. Here, in situ coherent X-ray diffraction imaging and transmission electron microscopy elucidate ...
SPRINGERNATURE2022

Status and perspectives of crystalline silicon photovoltaics in research and industry

Christophe Ballif, Franz-Josef Haug, Mathieu Gérard Boccard

Crystalline silicon (c-Si) photovoltaics has long been considered energy intensive and costly. Over the past decades, spectacular improvements along the manufacturing chain have made c-Si a low-cost source of electricity that can no longer be ignored. Over ...
2022

Ultrafast photo-induced phonon hardening due to Pauli blocking in MAPbI(3) single-crystal and polycrystalline perovskites

Samuel Poncé, Feliciano Giustino

Metal-halide perovskite semiconductors have attracted intense interest over the past decade, particularly for applications in photovoltaics. Low-energy optical phonons combined with significant crystal anharmonicity play an important role in charge-carrier ...
IOP PUBLISHING LTD2021
Show more
Related MOOCs (2)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.