Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In diffusion social learning over weakly-connected graphs, it has been shown recently that influential agents shape the beliefs of non-influential agents. This paper analyzes this mechanism more closely and addresses two main questions. First, the article examines how much freedom influential agents have in controlling the beliefs of the receiving agents, namely, whether receiving agents can be driven to arbitrary beliefs and whether the network structure limits the scope of control by the influential agents. Second, even if there is a limit to what influential agents can accomplish, this article develops mechanisms by which they can lead receiving agents to adopt certain beliefs. These questions raise interesting possibilities about belief control over networked agents. Once addressed, one ends up with design procedures that allow influential agents to drive other agents to endorse particular beliefs regardless of their local observations or convictions. The theoretical findings are illustrated by means of examples.