Publication

Theory of twin strengthening in fcc high entropy alloys

William Curtin
2021
Journal paper
Abstract

Twinning in fcc High Entropy Alloys (HEAs) has been implicated as a possible mechanism for hardening that enables enhanced ductility. Here, a theory for the twinning stress is developed analogous to recent theories for yield stress. Specifically, the stress to move a twin dislocation, i.e an fcc partial dislocation moving along a pre-existing twin boundary, through a random multicomponent alloy is determined. A reduced elasticity theory is then introduced in which atoms interact with the twin dislocation pressure field and the twin boundary. The theory is applied to NiCoCr using results from both interatomic potentials and elasticity theory. Results are also used to predict the increased stress for the motion of (i) a single partial dislocation leaving a trailing stacking fault and (ii) adjacent partial dislocations involved in twin nucleation. Increased strength is predicted for all processes involved in the nucleation and growth of fcc twins. Comparison to single-crystal experiments at room temperature then suggests that twinning is controlled by twin nucleation, with reasonable quantitative agreement. When solute/fault interactions are neglected, the theory shows that twinning and lattice flow stresses are related. The theory also provides insight into how other dilute solute additions could suppress twinning, as found experimentally.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Grain boundary strengthening
In materials science, grain-boundary strengthening (or Hall–Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain) size. It is based on the observation that grain boundaries are insurmountable borders for dislocations and that the number of dislocations within a grain has an effect on how stress builds up in the adjacent grain, which will eventually activate dislocation sources and thus enabling deformation in the neighbouring grain as well.
Crystal twinning
Crystal twinning occurs when two or more adjacent crystals of the same mineral are oriented so that they share some of the same crystal lattice points in a symmetrical manner. The result is an intergrowth of two separate crystals that are tightly bonded to each other. The surface along which the lattice points are shared in twinned crystals is called a composition surface or twin plane. Crystallographers classify twinned crystals by a number of twin laws. These twin laws are specific to the crystal structure.
Elasticity (physics)
In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after removal. This is in contrast to plasticity, in which the object fails to do so and instead remains in its deformed state. The physical reasons for elastic behavior can be quite different for different materials.
Show more
Related publications (45)

Solute-strengthening in metal alloys with short-range order

William Curtin, Shankha Nag

Recent surging interest in strengthening of High Entropy Alloys (HEAs) with possible chemical ordering motivates the development of new theory. Here, an existing theory for random alloys that accounts for solute-dislocation and solute–solute interactions i ...
2024

Strengthening of edge prism dislocations in Mg-Zn by cross-core diffusion

William Curtin

The activation of prismatic slip in Mg and its alloys can be beneficial for deformation and forming. Experiments show that addition of Zn and Al solutes have a softening effect at/below room temperature, attributed to solutes facilitating basal-prism-basal ...
2024

Strengthening mechanisms in dilute and random solid solution high-entropy BCC alloys

Alireza Ghafarollahi

Tuning the mechanical properties of metals, including strength, through adjusting the type and/or concentration of added solute elements, has been recognized as an effective way to design and produce materials with desired or optimized mechanical propertie ...
EPFL2022
Show more
Related MOOCs (4)
The Art of Structures I - Cables and arcs
Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des
The Art of Structures I - Cables and arcs
L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s
Cement Chemistry and Sustainable Cementitious Materials
Learn the basics of cement chemistry and laboratory best practices for assessment of its key properties.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.