Publication

Locally Differentially-Private Randomized Response for Discrete Distribution Learning

Abstract

We consider a setup in which confidential i.i.d. samples X1, . . . , Xn from an unknown finite-support distribution p are passed through n copies of a discrete privatization chan- nel (a.k.a. mechanism) producing outputs Y1, . . . , Yn. The channel law guarantees a local differential privacy of ε. Subject to a prescribed privacy level ε, the optimal channel should be designed such that an estimate of the source distribution based on the channel out- puts Y1, . . . , Yn converges as fast as possible to the exact value p. For this purpose we study the convergence to zero of three distribution distance metrics: f-divergence, mean- squared error and total variation. We derive the respective normalized first-order terms of convergence (as n → ∞), which for a given target privacy ε represent a rule-of-thumb factor by which the sample size must be augmented so as to achieve the same estimation accuracy as that of a non-randomizing channel. We formulate the privacy–fidelity trade-off problem as being that of minimizing said first-order term under a privacy constraint ε. We further identify a scalar quantity that captures the essence of this trade-off, and prove bounds and data-processing inequalities on this quantity. For some specific instances of the privacy–fidelity trade-off problem, we derive inner and outer bounds on the optimal trade-off curve.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.