Publication

Fredholm transformation on Laplacian and rapid stabilization for the heat equations

Shengquan Xiang
2021
Journal paper
Abstract

We revisit the rapid stabilization of the heat equation on the 1-dimensional torus using the backstepping method with a Fredholm transformation. We prove that, under some assumption on the control operator, two scalar controls are necessary and sufficient to get controllability and rapid stabilization. This classical framework allows us to present the backstepping method with the Fredholm transformation upon Laplace operators in a sharp functional setting, which is the major objective of this work, from the Riesz basis properties and the operator equality to the stabilizing spaces. Finally, we prove that the same Fredholm transformation also leads to the local rapid stability of the viscous Burgers equation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.