Publication

Gas-puff induced cold pulse propagation in ADITYA-U tokamak

Abstract

Short bursts (similar to 1 ms) of gas, injecting similar to 10(17)-10(18) molecules of hydrogen and/or deuterium, lead to the observation of cold pulse propagation phenomenon in hydrogen plasmas of the ADITYA-U tokamak. After every injection, a sharp increase in the chord-averaged density is observed followed by an increase in the core electron temperature. Simultaneously, the electron density and temperature decrease at the edge. All these observations are characteristics of cold pulse propagation due to the pulsed gas application. The increase in the core temperature is observed to depend on the values of both the chord-averaged plasma density at the instant of gas-injection and the amount of gas injected below a threshold value. Increasing the amount of gas-puff leads to higher increments in the core-density and the core-temperature. Interestingly, the rates of rise of density and temperature remain the same. The gas-puff also leads to a fast decrease in the radially outward electric field together with a rapid increase in the loop-voltage suggesting a reduction in the ion-orbit loss and an increase in Ware-pinch. This may explain the sharp density rise, which remains mostly independent of the toroidal magnetic field and plasma current in the experiment. Application of a subsequent gas-puff before the effect of the previous gas-pulse dies down, leads to an increase in the overall electron density and consequently the energy confinement time.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (32)
Magnetic confinement fusion
Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with inertial confinement fusion. The magnetic approach began in the 1940s and absorbed the majority of subsequent development. Fusion reactions combine light atomic nuclei such as hydrogen to form heavier ones such as helium, producing energy.
Temperature
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on various reference points and thermometric substances for definition. The most common scales are the Celsius scale with the unit symbol °C (formerly called centigrade), the Fahrenheit scale (°F), and the Kelvin scale (K), the latter being used predominantly for scientific purposes.
Effective temperature
The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is often used as an estimate of a body's surface temperature when the body's emissivity curve (as a function of wavelength) is not known. When the star's or planet's net emissivity in the relevant wavelength band is less than unity (less than that of a black body), the actual temperature of the body will be higher than the effective temperature.
Show more
Related publications (37)

Equilibrium pressure limits in stellarators

Antoine Baillod

This thesis delves into the potential of magnetic fusion energy, and in particular focuses on the stellarator concept. Stellarators use external coils to produce 3-dimensional (3D) magnetic fields that confine a thermonuclear plasma in a topologically toro ...
EPFL2023

Full-discharge simulation and optimization with the RAPTOR code, from present tokamaks to ITER and DEMO

Simon Van Mulders

Tokamak devices aim to magnetically confine a hydrogen plasma at sufficiently high pressure to achieve net energy production from nuclear fusion of light isotopes. Predictive modeling and optimization is crucial for reliable operation of tokamak reactors, ...
EPFL2023

How accurate are flux-tube (local) gyrokinetic codes in modeling energetic particle effects on core turbulence?

Olivier Sauter, Alberto Bottino, Emanuele Poli

Flux-tube (local) gyrokinetic codes are widely used to simulate drift-wave turbulence in magnetic confinement devices. While a large number of studies show that flux-tube codes provide an excellent approximation for turbulent transport in medium-large devi ...
IOP Publishing Ltd2023
Show more
Related MOOCs (10)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.