Publication

Microbes support enhanced nitrogen requirements of coral holobionts in a high CO 2 environment

Abstract

Ocean acidification is posing a threat to calcifying organisms due to the increased energy requirements of calcification under high CO2 conditions. The ability of scleractinian corals to cope with future ocean conditions will thus depend on their ability to fulfil their carbon requirement. However, the primary productivity of coral holobionts is limited by low nitrogen (N) availability in coral reef waters. Here, we employed CO2 seeps of Tutum Bay (Papua New Guinea) as a natural laboratory to understand how coral holobionts offset their increased energy requirements under high CO2 conditions. Our results demonstrate for the first time that under high pCO2 conditions, N assimilation pathways of Pocillopora damicornis are jointly modified. We found that diazotroph-derived N assimilation rates in the Symbiodiniaceae were significantly higher in comparison to an ambient CO2 control site, concomitant with a restructured diazotroph community and the specific prevalence of an alpha-proteobacterium. Further, corals at the high CO2 site also had increased feeding rates on picoplankton and in particular exhibited selective feeding on Synechococcus sp., known to be rich in N. Given the high abundance of picoplankton in oligotrophic waters at large, our results suggest that corals exhibiting flexible diazotrophic communities and capable of exploiting N-rich picoplankton sources to offset their increased N requirements may be able to cope better in a high pCO2 world.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (44)
Ocean acidification
Ocean acidification is the decrease in the pH of the Earth's ocean. Between 1950 and 2020, the average pH of the ocean surface fell from approximately 8.15 to 8.05. Carbon dioxide emissions from human activities are the primary cause of ocean acidification, with atmospheric carbon dioxide (CO2) levels exceeding 410 ppm (in 2020). CO2 from the atmosphere is absorbed by the oceans. This produces carbonic acid (H2CO3) which dissociates into a bicarbonate ion () and a hydrogen ion (H+).
Coral reef
A coral reef is an underwater ecosystem characterized by reef-building corals. Reefs are formed of colonies of coral polyps held together by calcium carbonate. Most coral reefs are built from stony corals, whose polyps cluster in groups. Coral belongs to the class Anthozoa in the animal phylum Cnidaria, which includes sea anemones and jellyfish. Unlike sea anemones, corals secrete hard carbonate exoskeletons that support and protect the coral. Most reefs grow best in warm, shallow, clear, sunny and agitated water.
Coral bleaching
Coral bleaching is the process when corals become white due to various stressors, such as changes in temperature, light, or nutrients. Bleaching occurs when coral polyps expel the zooxanthellae (dinoflagellates that are commonly referred to as algae) that live inside their tissue, causing the coral to turn white. The zooxanthellae are photosynthetic, and as the water temperature rises, they begin to produce reactive oxygen species. This is toxic to the coral, so the coral expels the zooxanthellae.
Show more
Related publications (52)

Gene expression of Pocillopora damicornis coral larvae in response to acidification and ocean warming

Nils Rädecker, Hui Huang

Objectives The endosymbiosis with Symbiodiniaceae is key to the ecological success of reef-building corals. However, climate change is threatening to destabilize this symbiosis on a global scale. Most studies looking into the response of corals to heat str ...
London2024

Excess labile carbon promotes diazotroph abundance in heat-stressed octocorals

Claudia Isabella Pogoreutz

Nitrogen limitation is the foundation of stable coral-algal symbioses. Diazotrophs, prokaryotes capable of fixing N-2 into ammonia, support the productivity of corals in oligotrophic waters, but could contribute to the destabilization of holobiont function ...
ROYAL SOC2023

Host starvation and in hospite degradation of algal symbionts shape the heat stress response of the Cassiopea-Symbiodiniaceae symbiosis

Anders Meibom, Stéphane Laurent Escrig, Cristina Martin Olmos, Nils Rädecker, Guilhem Maurice Louis Banc-Prandi, Gaëlle Delphine Toullec

Global warming is causing large-scale disruption of cnidarian-Symbiodiniaceae symbioses fundamental to major marine ecosystems, such as coral reefs. However, the mechanisms by which heat stress perturbs these symbiotic partnerships remain poorly understood ...
2023
Show more
Related MOOCs (1)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.