Publication

Rationally almost periodic sequences, polynomial multiple recurrence and symbolic dynamics

Florian Karl Richter
2019
Journal paper
Abstract

A set RNR\subset \mathbb{N} is called rational if it is well approximable by finite unions of arithmetic progressions, meaning that for every \unicode[STIX]x1D716>0\unicode[STIX]{x1D716}>0 there exists a set B=i=1raiN+biB=\bigcup _{i=1}^{r}a_{i}\mathbb{N}+b_{i}, where a1,,ar,b1,,brNa_{1},\ldots ,a_{r},b_{1},\ldots ,b_{r}\in \mathbb{N}, such that \begin{eqnarray}\overline{d}(R\triangle B):=\limsup _{N\rightarrow \infty }\frac{|(R\triangle B)\cap \{1,\ldots ,N\}|}{N}0$ for all $u\in \mathbb{N}$;(b) $R$ is an averaging set of polynomial single recurrence;(c) $R$ is an averaging set of polynomial multiple recurrence.As an application, we show that if $R\subset \mathbb{N}$ is rational and divisible, then for any set $E\subset \mathbb{N}$ with $\overline{d}(E)>0$ and any polynomials $p_{i}\in \mathbb{Q}[t]$, $i=1,\ldots ,\ell$, which satisfy $p_{i}(\mathbb{Z})\subset \mathbb{Z}$ and $p_{i}(0)=0$ for all $i\in \{1,\ldots ,\ell \}$, there exists $\unicode[STIX]{x1D6FD}>0$ such that the set \begin{eqnarray}{n\in R:\overline{d}(E\cap (E-p_{1}(n))\cap \cdots \cap (E-p_{\ell }(n)))>\unicode[STIX]{x1D6FD}}\end{eqnarray}has positive lower density.Ramsey-theoretical applications naturally lead to problems in symbolic dynamics, which involve rationally almost periodic sequences (sequences whose level-sets are rational). We prove that if ${\mathcal{A}}$ is a finite alphabet, $\unicode[STIX]{x1D702}\in {\mathcal{A}}^{\mathbb{N}}$ is rationally almost periodic, $S$ denotes the left-shift on ${\mathcal{A}}^{\mathbb{Z}}$ and\begin{eqnarray}X:={y\in {\mathcal{A}}^{\mathbb{Z}}:\text{each word appearing in}~y~\text{appears in}~\unicode[STIX]{x1D702}},\end{eqnarray}$$ then \unicode[STIX]x1D702\unicode[STIX]{x1D702} is a generic point for an SS-invariant probability measure \unicode[STIX]x1D708\unicode[STIX]{x1D708} on XX such that the measure-preserving system (X,\unicode[STIX]x1D708,S)(X,\unicode[STIX]{x1D708},S) is ergodic and has rational discrete spectrum.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.